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The High-Altitude Water Cherenkov experiment (HAWC) observatory is located 4100 meters
above sea level. HAWC is able to detect secondary particles from extensive air showers (EAS)
initiated in the interaction of a primary particle (either a gamma or a charged cosmic ray) with
the upper atmosphere. Because an overwhelming majority of EAS events are triggered by cosmic
rays, background noise suppression plays an important role in the data analysis process of the
HAWC observatory. Currently, HAWC uses cuts on two parameters (whose values depend on the
spatial distribution and luminosity of an event) to separate gamma-ray events from background
hadronic showers. In this work, a search for additional gamma-hadron separation parameters was
conducted to improve the efficiency of the HAWC background suppression technique. The best-
performing parameters were integrated to a feed-foward Multilayer Perceptron Neural Network
(MLP-NN), along with the traditional parameters. Various iterations of MLP-NN’s were trained
on Monte Carlo data, and tested on Crab data. Preliminary results show that the addition of
new parameters can improve the significance of the point source at high-energies (~ TeV), at the
expense of slightly worse performance in conventional low-energy bins (~ GeV). Further work is
underway to improve the efficiency of the neural network at low energies.
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1. Introduction

The High-Altitude Water Cherenkov, HAWC, is a gamma-ray observatory that is able to detect
primary particles in the energy range from 500 GeV to 100 TeV. HAWC is composed of 300 water
Cherenkov detector (WCDs), each instrumented with 4 photomultiplier tubes (PMTs) that detect
the Cherenkov light from charged particles in extensive air showers. Given that 99 % of the events
detected by HAWC come from cosmic-ray air showers, the study of gamma-ray sources requires
the development of efficient techniques to achieve gamma-hadron separation [1, 2, 3].

Currently, HAWC uses two parameters (compactness “C” and PINCness “P”) that help distin-
guish between gamma events and hadron events, this way of identifying particles is called standard
cut (for more details see the section 2.6 of [3]). Both parameters depend upon the spatial distri-
bution of the charge deposited by the secondary particles of the shower inside of the array. All
events are separated into bins (), that depend on the fraction of available PMTs, f};,, that record
light during during the event. The events satisfying certain optimized cut values on P and C are
then considered photon candidates (Table 1 shows the optimal cut of each bin). In this work, we
used neural networks to improve the gamma-hadron separation, in addition, we investigated the
performance of the network when C, P are used and when including new parameters in the inputs
that could help distinguish between the two types of showers.

B Shit P maximum | C minimum
0 | 0.044 - 0.067 <14 >16
1 | 0.067-0.102 2.2 7.0
2 | 0.105-0.162 3.0 9.0
31 0.162-0.247 2.3 11.0
4 10.247 -0.356 1.9 15.0
5 | 0.356 - 0.485 1.9 18.0
6 | 0.485-0.618 1.7 17.0
7 | 0.618 -0.740 1.8 15.0
8 | 0.740 - 0.840 1.8 15.0
9 | 0.840 - 1.000 1.6 3.0

Table 1: The definition of the size bin B is given by the fraction of available PMTSs, (f};,), that record light
during the event. Each bin has its own optimal cut on Compactnes (C) and PINCness (P). Events with a P

less than indicated and a C greater than indicated are considered photon candidates [3].

2. Training data set

The MC events were used to train the networks. Two types of particles were used: gamma and
proton events, and they were simulated with a HAWC-250 configuration, that is, only 83 % of the
array was activated. We used protons to simulate cosmic rays because they constitute nearly 99 %
of the cosmic ray intensity. The conditions for selecting the events were:
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e The event is well reconstructed, that is, the core and plane fit have been correctly computed.
o The event falls within HAWC.

In addition, a uniform distribution of nHits' (an energy proxy) was chosen to better sample the
high-energy range. Because if the natural distribution (E~2"7) is used [5], the network will have
more experience to recognize events with low energy and have a poor performance at high energy.

2.1 Finding new parameters

The performance of neural networks is heavily dependent on the input parameters used [6].
Therefore, several parameters were analyzed. For the first attempt, the parameters that are in the
HAWC data stream, were investigated. For the next attempt, new parameters were computed based
on the timing information of the events. The following parameters are some of the ones that were
evaluated for their G/H separation potential:

e Parameters that belong to the HAWC data stream

— planefitChi2: The x? of a Gaussian plane fit to the shower front.
SFCFChi2: The yx? of a faster EAS core fit.

logmaxPE: The PMT that has the maximum Photo-Electron (PE) charge during the
event.

logNPE: The logarithm of the total PE charge calculated in an event.
o New time-based parameters

— deltaTime: It is the time difference between the trigger time of the first PMT and the
last PMT that are triggered during the event

— TimeVariance: It is a simple measure of the scatter in PMT trigger time for a given
event.

The parameters with bold font (SCFCChi2 and logmaxPE) are used in this analysis because of
their different profiles for gamma and protons, for example, the histogram of SFCFChi2 (Figure
1). The gamma histogram is skewed left, whereas the hadron histogram has a more symmetric
shape. Therefore they can be recognised with a cut. We don’t use the other parameters due to
their histograms having the similar pattern cannot be separated with a cut like, such as deltaTime
parameter (Figure 2).

3. Training stage

In the training stage, HAWC simulations were used (see section 2) for training the Neural Net-
works (NNs) to identify between primary particles. The NN used is a Multilayer Perceptron [7].
We defined a NN output value of 1 for gamma-like events, and O for hadron events: that is, the
network must produce a value of 1 if the event is a gamma and O if it is a hadron (Figure 3b shows

'nHit is the number of PMTs activated during the event.
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Figure 1: The histograms of the x? of the core fit (SFCFChi2) using MC data. It is a potential parameter to
use as input of the network for distinguishing between gammas and hadrons events since they have different

shape and the histogram of gamma events is skewed right.
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Figure 2: The histograms of the deltatime for gamma and proton induced EAS using MC data, that is the
time between first particle and last particle detected in the event. As both histograms have the same pattern

(skewed left), this parameter is not useful as an input to the network.

an example of the output neural network). In order to identify the type of the events, a cut is used,
in other words, if the output of the network is equal or greater than the cut value the event is con-
sidered like gamma event, in another case, it is a hadron event. The optimal cut is when it has an
excellent hadron rejection but an acceptable gamma efficiency, it is when the Q factor has the max-
imum value, where is defined as TPR / v/FPR, where TPR is the fraction of correctly classified
gamma events, also called gamma efficiency, and F PR is the fraction of badly classified hadron
events (hadron rejection).

Before adding the new parameters described in section 2.1 to the network, one hundred training
iterations of a simple 2-parameter network (Compactness and PINCness) were made, to see if the
resulting optimal cut value for distinguishing between particles was sensitive to the random seed
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(a) Architecture of the neural network. (b) Typical output of a neural network.

Figure 3: In (a) shows the architecture of the network. The number of neurons in the first layer depends on
the number of inputs that the network uses. In (b) is shown the histogram of the output of the NN2 after it

was trained.

values given to the NN weights. The histogram on figure 4a shows the optimal cut values obtained
from these trainings. The above figure shows that the training process appears to be giving stable
cut values, which do not fluctuate too much. The slight variation of the maximum Q-factor (see
figure 4b) can be attributed to the random nature of the initial NN weight seeding in the training
process.
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Figure 4: One hundred NNs were trained in order to investigate the fluctation on the optimal cut and the Q

factor in the training stage.

For exploring the increase on G/H separation efficiency, three NNs were trained with similar
architecture but different inputs (NoInputs:5:5:1, see Figure 3a). The output layer defines the prob-
ability of being a gamma event or a hadron event. The networks that are used in this work are
shown below:

e NNI: It uses three input parameters: C, P and SFCFChi2 .
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e NN2: It uses three input parameters: C, P and logmaxPE.

e NN3: It uses four input parameters: C, P, SFCFChi2 and logmaxPE.

4. Testing stage

The best way to compare the different performance between Standard Cut and the NN is using
HAWC data. We chose a set of well-reconstructed events? within +6° of the Crab Nebula in the
period from November 2014 to December 2015. One significance map per energy bin was made
with a Simple Analysis Tools that is implemented in the official HAWC-software. From each
map, the maximum significance was extracted, and given in the Table 2. The results in the bin 0
(low-energy) show that the NN2 has better performances than the standard cut, suggesting that the
logmaxPE parameter is useful for distinguishing events with low energy. Meanwhile, SFCFChi2
appears to improve the high-energy performance of the G/H separation process (bin 8 and 9), with
NNT having the best results in this energy range. The combination of both parameters in the neural
network, on the other hand, worsens the separation performances in almost every energy bin.

B | Standard cut | NN1 | NN2 | NN3
0 4.49 2776 | 5.14 | 3.15
1 9.60 392 | 824 | 2.67
2 15.39 6.89 | 14.28 | 5.15
3 22.95 1548 | 21.74 | 12.29
4 30.13 29.75 | 30.98 | 25.44
5 32.25 3471 | 33.46 | 32.53
6 32.75 3477 | 31.88 | 31.74
7 29.37 29.82 | 27.02 | 27.82
8 28.73 31.25 | 28.04 | 28.89
9 28.21 31.64 | 26.28 | 27.38

Table 2: The maximum significance in the Crab map obtained from each neural network trained in this

work and from the standard cut.

5. Conclusion

In this work, we trained 3 neural networks with C, P and additional parameters, that had a poten-
tial for gamma-hadron separation in HAWC. In each network, a cut value on the NN’s normalized
output was selected by finding the maximal quality factor in the training phase of the analysis.
Following the training on simulated shower events, the neural nets were tested using sample data
from the Crab, and evaluating the maximum significance obtained on the source for all three types
of NNs. The SFCFChi2 and logmaxPE parameters, which were selected for their higher gamma-
hadron separation potential, have allowed improve the high-energy and low-energy ranges of the

2The core and plane are correctly computed.
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data bins, respectivety. The combination of the two parameters inside the same neural network has,
on the other hand, worse performances than the standard cuts, a behaviour which requires further
investigations.
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