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Local interstellar spectra (LIS) for protons, helium and antiprotons are built using the most recent
experimental results combined with state-of-the-art models for propagation in the Galaxy and
Heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a
single framework that is run to reproduce direct measurements of cosmic ray (CR) species at
different modulation levels and at both polarities of the solar magnetic field. To do so in a self-
consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed
into HelMod that provides modulated spectra for specific time periods of selected experiments to
compare with the data. The parameters were tuned with a maximum likelihood procedure using
an extensive data set of proton spectra from 1997-2015. The proposed LIS accommodate both
the low energy interstellar CR spectra measured by Voyager 1 and the high energy observations
by BESS, PAMELA, AMS-01, and AMS-02 made from the balloons and near-Earth payloads.
The proton LIS also accounts for Ulysses counting rate features measured out of the ecliptic
plane. The obtained solution is in a good agreement with proton, helium, and antiproton data by
AMS-02, BESS, and PAMELA in the whole energy range.
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1. Introduction

The launch of PAMELA [1] in 2006, followed by the Fermi Large Area Telescope (Fermi-
LAT) [2] in 2008, and the AMS–02 [3] in 2011 signify the beginning of a new era in astrophysics.
New materials and technologies employed by these space missions have enabled measurements
with unmatched precision, which allows for searches of subtle signatures of new phenomena in CR
and γ-ray data. These advances are built on solid results of earlier missions, such as ACE/CRIS,
SuperTIGER, ATIC, BESS, CAPRICE, CREAM, HEAO-3, HEAT, ISOMAX, TIGER, TRACER,
Ulysses, and many others. Launched in 1977 Voyager 1, 2 spacecrafts are providing unique data on
the elemental spectra and composition at the interstellar reaches of the Solar system [36,37]. Other
high-expectations missions are recently launched (CALET and DAMPE) or are awaiting for launch
(ISS-CREAM). Indirect CR measurements are made through observations of their emissions by
space- and ground-based telescopes: INTEGRAL, HAWC, H.E.S.S., MAGIC, VERITAS, WMAP,
and Planck. The most spectacular is the Fermi-LAT mission that is mapping the all-sky diffuse
γ-ray emission, produced by CR interactions in the interstellar medium, and near CR accelerators.

Our understanding of the origin of CRs, their acceleration mechanisms, main features of the
interstellar propagation, and CR source composition comes from a combination of observational
data and a strong theoretical effort [4]. Interpretation of many different kinds of data with a self-
consistent model requires a state-of-the-art numerical tool that combines the latest information
on the Galactic structure (distributions of gas, dust, radiation and magnetic fields) with the latest
formalisms describing particle and nuclear cross sections and description of the processes in the
ISM. This was realized about 20 years ago, when some of us started to develop the most advanced
fully numerical CR propagation code, called GALPROP1 [5, 6]. The key idea behind GALPROP
is that all CR-related data, including direct measurements, γ-rays, synchrotron radiation, etc., are
subject to the same Galactic physics and must be modeled simultaneously. The GALPROP model
for CR propagation is being continuously developed in order to provide a framework for studies of
CR propagation in the Galaxy and interpretation of relevant observations [4–16]. The latest version
and supplementary datasets are available through a WebRun interface at the dedicated website.

Meanwhile, an accurate description of propagation of CR particles through the Heliosphere in
the last ∼130 AU, that is a minuscule distance by the Galactic scale, was a considerable challenge
until now. These last 0.0006 pc are so important because they provide a link between the predictions
of the interstellar propagation models with the location where almost all direct CR measurements
are made. Even though, the heliospheric modulation affects only particles with energies below
30–50 GeV, this range includes the sub-GeV energies where the most precise measurements of
CR isotopic composition are made. These low energy data are used to derive the parameters of
interstellar propagation that are then extrapolated onto the whole Galaxy and all energies up to the
multi-TeV region. Therefore, an improvement in the description of the heliospheric propagation
has a global impact on our understanding of CR phenomena. However, in most applications the
effect of solar modulation was treated using the simplest force-field approximation [17,18] in which
the diffusion tensor is approximated by a scalar and the resulting modulation effects are expressed
with a spherically symmetric modulated differential number density. This was “matched” by the

∗Speaker.
1http://galprop.stanford.edu
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uniform Leaky-Box model for Galactic propagation – a combination, which dominated the CR
interpretation landscape in the second part of the 20th century and in the beginning of the 21st.
With the development of sophisticated Galactic propagation models, the force-field approximation
became the Achilles’ heel of CR astrophysics. More advanced models did exist – including those
accounting for the so-called “charge drift effect” [19–22], – but they were not as “user friendly”
and required a high level of expertise in the heliospheric physics.

We use a recently developed version of a 2D Monte Carlo code for heliospheric propagation
HelMod2 [23–25] combined with GALPROP to take advantage of a significant progress in CR mea-
surements to derive the LIS for protons, helium and antiprotons. The HelMod model includes all
relevant effects and, thus, a full description of the diffusion tensor. It allows an accurate calculation
of the heliospheric propagation for particles with rigidities >1 GV. For more detail see [26].

2. Calculations and results

In order to derive the physically motivated LIS of CR species, an iterative procedure was
developed to feed the GALPROP output into HelMod that provides modulated spectra for spe-
cific time periods to compare with AMS-02 data as observational constraints. The Markov Chain
Monte Carlo (MCMC) interface to the development version of GALPROP was adapted from Cos-
RayMC [28] and, in general, from COSMOMC package. Main propagation parameters were left
free in the scan using the 2D GALPROP model (Table 1): the Galactic halo half-width z, the nor-
malization of the diffusion coefficient D0 at the reference rigidity RD = 4.5 GV and the index of
its rigidity dependence δ , the Alfvén velocity VAlf, the convection velocity and its gradient (Vconv,
dVconv/dz). The radial size of the Galaxy was set to 20 kpc. To correctly reproduce the AMS-02
proton data at low energies we introduced a factor β η in the diffusion coefficient, where β = v/c,
and the best fit value of η = 0.91. Parameters of the injection spectra, such as spectral indices and
the break rigidities, were also left free, but their exact values depend on the solar modulation, so
the low energy parts of the spectra are tuned together with the solar modulation parameters. The
numerical values of the CR source distribution parameters [14], zscale = 0.2,α = 1.5, and β = 3.5,
remain unchanged for all scans.

A model with both reacceleration and convection was used. The solar modulation is calculated
using numerical functions based on HelMod. In the scan we use all published AMS-02 data on
protons [29], helium [30], B/C ratio [31] and electrons [32], while antiproton data were explicitly
excluded – one of our goals is to make a prediction of the antiproton spectrum based on other
CR data. The goodness estimator of the parameter scan is the natural logarithm of the likelihood
function. The best fit values along with error estimates and the initial ranges are given in Table 1.

The combined convection-reacceleration model has a uniform spatial diffusion coefficient
(D0x = D0z) with a single power-law index (δ1 = δ2) in the whole rigidity range. The index δ

of the rigidity dependence of the diffusion coefficient is derived from the slope of the secondary-
to-primary ratio (e.g., B/C). A fit to the AMS-02 measurements of the B/C ratio [31] yields 0.395,
which is very close to the value δ = 0.397± 0.007 found from the fit to the PAMELA data [34]
and quite close to the Kolmogorov index of 1/3. The MCMC procedure prefers a medium size halo
of 4 kpc, also favored in the past studies [35].

2http://www.helmod.org/
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Parameter Best Value Units 1σ Mean Error % Error Scan Range

z 4.0 kpc 0.7 18 [1-10]
D0/1028 4.3 cm2 s−1 0.5 12 [1-10]

δ 0.395 – 0.025 6 [0.3-0.9]
VAlf 28.6 km s−1 3.0 10 [0-40]

Vconv 12.4 km s−1 0.8 6 [0-20]
dVconv/dz 10.2 km s−1 kpc−1 0.7 7 [0-20]

Table 1: Propagation parameters values, obtained with the MCMC posterior distributions

Parameters p He e− Mean Error Range

R1 7 GV 7 GV 6 GV 1 GV [4-10]
R2 360 GV 330 GV 100 GV 10 GV [300-400]
γ1 1.69 1.71 1.45 0.06 [1.5-2.1]
γ2 2.44 2.38 2.75 0.04 [2.1-2.7]
γ3 2.28 2.21 2.49 0.05 [2-2.4]

Table 2: Spectral parameters for protons, helium, and electrons

Note that the current MCMC setup has several distinct differences from those usually em-
ployed in the literature. (i) In the current scan we use p, He, B/C, and e− data from AMS-02
experiment only, i.e. only data >2 GV are used. (ii) Both reacceleration and convection processes
are included simultaneously. (iii) We do not use the force-field approximation. Instead, for the
modulation calculations we use the HelMod routine. (iv) The MCMC procedure is used to find
the best values and confidence limits for the interstellar propagation parameters and the injection
spectra. The interstellar propagation was fixed after this step. (v) A grid of GALPROP models
is built using small, within a few per cent, variations of the best fit parameter values found at the
previous step. This model grid is used for a fine tuning of the heliospheric propagation.

The MCMC procedure is used only in the first step to define a consistent parameter space, then
a fine-tuning of the model employing the HelMod Module was performed. Thus the best values in
Table 1 are not necessarily the most probable values (MPV) obtained with the MCMC procedure,
but the final values which come from the GALPROP-HelMod combined fine tuning. The injection
spectrum parameters for each species, such as the indices γi below and above the rigidity breaks
Ri, have been moved together with solar modulation parameters within physical ranges in order to
find best fit solutions for all the observables (Table 2).

As pointed out in [13], there could be a significant difference between the propagation param-
eters derived from the light isotopes (p, p̄, He), and nuclei (boron to silicon). Our study does not
show any evident discrepancies between the light isotopes (p, p̄, He), and the B/C ratio (nuclei).
This may be attributed to the differences in the setups as explained above and, in particular, by a
more realistic description of heliospheric propagation used in the present analysis.

Combination of AMS-02 high precision data with the data taken by earlier missions (AMS-
01, BESS, PAMELA) at different epochs allows the same GALPROP/HelMod framework to be
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Figure 1: The differential intensities of CR protons (left) and helium (right) measured by AMS-02, dashed
line is the GALPROP LIS, and solid line is the computed modulated spectrum. The bottom panel is the
relative difference between the numerical solution and experimental data.

extended to account for different polarities of the solar magnetic field and for periods of high and
low solar activity in cycles 23 and 24, while at the same time providing an accurate description
of the Voyager 1 spectra taken outside of the Heliosphere. A detailed comparison made with
observational data for conditions of low (i.e., 1997–1998, 2006–2010) and high solar activity (i.e.
2000–2002, 2011–2013), as well as with the moderate activity period, allows a unique model to be
built that is valid for the entire solar cycle. Even though the data below ∼200 MeV/n (ACE/CRIS,
Voyager 1) were not included into the MCMC scan, the agreement between the model predictions
and data is remarkable. Here we provide only illustrative results, more detail could be found in [26].

High solar activity periods are the most challenging from the viewpoint of theory of the helio-
spheric transport. Figure 1 shows the differential intensities of CR protons and helium as measured
by the AMS-02 during the solar activity peak of cycle 24 [29,30], the GALPROP LIS, and the com-
puted modulated spectrum. In Figure 2 (left) antiproton calculations are compared to the AMS-02
measurements corresponding to a period of high solar activity. The antiproton calculations include
a contribution from CR nuclei through nickel. The GALPROP-HelMod spectrum appears slightly
lower than the data in the range ∼7–20 GV, but the discrepancy does not exceed one standard de-
viation once the HelMod and AMS-02 errors are taken into account. More plots, tabulated spectra,
and analytical fits to the derived LIS are given in paper [26].

The quality of the model description can be judged from a comparison with the Ulysses ob-
servations taken from 1990s through 2009 [38–40] outside the ecliptic plane up to ±80◦ in solar
latitude and at distances ∼1–5 AU from the Sun. We have shown [24, 41] that a combination of a
polar modification in the description of the heliospheric magnetic field with a diffusion tensor that
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Figure 2: Left panel: The differential intensity of CR antiprotons measured by AMS-02, dashed line is
the GALPROP LIS, and solid line is the computed modulated spectrum. The bottom panel is the relative
difference between the model and experimental data. Right panel: Ulysses counting rate normalized to
the average value for the KET coincidence channel K12 (proton energy 0.25-2.2 GeV) averaged over a
Carrington rotation. Solid line – the HelMod calculations for protons of 2.2 GeV.

is independent on the solar latitude is able to reproduce the measured latitudinal gradients during
the low solar activity periods. In Figure 2 (right) we compare the Ulysses normalized counting rate
with the HelMod calculations.

To conclude, the proposed LIS provide good description of all the data (Voyager 1, BESS,
PAMELA, AMS-01, and AMS-02) for solar cycles 23 and 24 in the whole energy range.
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