
P
o
S
(
I
C
R
C
2
0
1
7
)
1
2
1

 

 Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ 

TOROIDAL MODELS OF THE FORCE-FREE 
MAGNETIC FIELD 

Anastasia Petukhova1 

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, SB RAS, Yakutsk, Russia 
31 Lenin Ave., Yakutsk, Russia 
E-mail: petukhova@ikfia.ysn.ru 

Ivan Petukhov 

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, SB RAS, Yakutsk, Russia 
31 Lenin Ave., Yakutsk, Russia 
E-mail: i_van@ikfia.ysn.ru 

Stanislav Petukhov 

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, SB RAS, Yakutsk, Russia 
31 Lenin Ave., Yakutsk, Russia 
E-mail: petukhov@ikfia.ysn.ru 

The properties of four toroidal models of the magnetic flux rope are shown. The results of the 

analysis can be used to interpret in-situ observations of the magnetic flux rope and study Forbush-

decrease in magnetic clouds. 

                                                           
1Speaker 

35th International Cosmic Ray Conference — ICRC2017
10–20 July, 2017
Bexco, Busan, Korea

http://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
1
7
)
1
2
1

TOROIDAL MODELS Anastasia Petukhova, Ivan Petukhov, Stanislav Petukhov 

2 

1. Introduction 

It is suggested that magnetic clouds are large-scale magnetic loops driven from the solar 

atmosphere to interplanetary space by coronal mass ejections (CMEs). For interpretation of in-

situ observations, the cylindrical model of the magnetic field called the Lundqvist solution is often 

used [1]. It is easy to see that the cylindrical model does not describe properties of field curvature. 

To interpret measurements, Marubashi [2] introduced a toroidal structure of the magnetic field. 

The parameters of magnetic clouds based on the cylindrical and toroidal models significantly 

differ in [3]: 1) orientation of the flux rope axis; 2) transverse radius (the flux rope radius) (radius 

in the toroidal model is less). 

The cylindrical model is also applied to research Forbush decrease (FD) in a magnetic cloud 

[4]. However, the cylindrical model has its shortcomings as spatial distribution of cosmic rays 

(CR) depends on magnetic flux rope (MFR) due to their high mobility. Thus, the toroidal model 

is more appropriate for these studies [5,6]. 

In this work we show and compare properties of four toroidal models for the force-free 

magnetic field, which can be used in various studies.  

2. Models of the force-free magnetic field 

It is generally suggested that the magnetic field in magnetic clouds is force-free. This field 

satisfies to the equation 𝑗 × �⃗⃗� = 0, where 𝑗 is current density, �⃗⃗� is magnetic field strenght. It 

follows that the current flows along the magnetic field 𝑗~�⃗⃗�. Taking into account Maxwell's 

equations, the equation system determing the force-free magnetic field can be written as 

    �⃗⃗� × �⃗⃗� = 𝛼�⃗⃗�,   �⃗⃗��⃗⃗� = 0     (1) 

where α is a scalar. In the case when α is a constant or depends on coordinates, the field is 

called linear or nonlinear, respectively. The second equation from (1) takes into account the 

solenoidal condition. 

2.1 Miller & Turner solution 

Miller and Turner calculated the magnetic field in a torus [7]. They used curvilinear 

coordinate system, its coordinates are connected with Cartesian coordinates by the following 

equations 

 𝑥 = (𝑅0 + 𝜌𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑,   𝑦 = (𝑅0 + 𝜌𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑,   𝑧 = 𝜌𝑠𝑖𝑛𝜃,   

where 𝑅0 is the torus axis radius, which locates in the X0Y plane; 𝜌 is the cross-section 

radius of the torus; 𝜃 is the angle in this plane counted from X0Y towards the Z-axis (0 ≤ 𝜃 ≤

2𝜋); 𝜑 is the angle of this plane counted from the X-axis towards the Y-axis (0 ≤ 𝜑 ≤ 2𝜋). Taking 

into account the symmetry along the torus axis (∂/∂φ=0), the solution of the system (1) can be 

presented as 

𝐵𝜌 = 𝑠1𝑠2
𝐵0𝜌0

2𝛼𝑅0
𝐽0𝑠𝑖𝑛𝜃,   𝐵𝜃 = −𝑠1𝑠2𝐵0[𝐽1 −

𝜌0

4.8𝑅0
(𝐽0 + 2.4

𝜌𝐽1

𝜌0
) 𝑐𝑜𝑠𝜃],    

𝐵𝜑 = 𝑠1𝐵0(1 −
𝜌𝑐𝑜𝑠𝜃

2𝑅0
)𝐽0,        (2) 

where 𝐽0, 𝐽1 are the Bessel functions of the zero- and first- orders; 𝐵0 is the magnetic field 

strength at the torus axis; 𝑠1 = ±1, 𝑠2 = ±1. Values of 𝑠1, 𝑠2 describe 4 types of MFR. Equations 

from (2) include the boundary conditions of 𝐵𝜌(𝜌0) = 0, 𝐵𝜑(𝜌0) = 0 reached by the choice of an 
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argument of the Bessel function as 𝛼 = ±2.4/𝜌0, – the first root of the Bessel function of the 

zero-order. Solution (2) is approximate supposing that 𝜌0/𝑅0 ≪ 1. Substituting (2) in (1), we 

obtain �⃗⃗� × �⃗⃗� = 𝛼�⃗⃗� + �⃗⃗⃗�, where �⃗⃗⃗� is discrepancy. The solenoidal condition is approximately 

fulfilled as well. 

Figure a) shows the distributions of the relative magnetic field strength in the plane of the 

torus cross-section and the projections of the field lines located on the surface of toroids with 

different radii. Figure b) shows the projections of the field lines on the X0Y plane located on the 

surface of different toroids. Here we used toroidal surfaces with radii 𝜌𝑇 < 𝜌0 as toroids. As can 

be seen from the figure, the field lines are on the surface of each toroid. In this case, the field lines 

are represented as helices with a step depending on the toroid radius: the smaller the radius, the 

greater the step. The listed properties are characteristics of force-free magnetic fields. It can be 

seen from Figure a) that the axis of the magnetic field is slightly shifted from the center of the 

torus. The maximum value of the magnetic field strength is shifted to the center of the torus as 

well. The ratio between the magnetic field strengths at the torus axis and surface is limited by 2. 

The calculation results shown in Figures a-h) are calculated with 𝑅0/𝜌0 = 5. 

2.2 Modified Miller and Turner solution 

Romashets, Vandas [8] modified the Miller and Turner solution. They used the vector 

potential of the modified solution 𝐴(𝑚) =
1

𝛼
�⃗⃗� , where �⃗⃗� is the Miller and Turner solution (2). 

Thus, �⃗⃗�(𝑚) = �⃗⃗� × 𝐴(𝑚) =
1

𝛼
�⃗⃗� × �⃗⃗� =

1

𝛼
(𝛼�⃗⃗� + �⃗⃗⃗�) = �⃗⃗� +

�⃗⃗⃗�

𝛼
, where �⃗⃗�(𝑚) is strength of the 

modified magnetic field, �⃗⃗⃗� is discrepancy of the Miller and Turner solution. Using (2), we obtain 

the components of the modified magnetic field 

𝐵𝜌
(𝑚)

=
𝐵0𝐽0𝑠𝑖𝑛𝜃

2𝛼𝑅0

(𝑅0−2𝜌𝑐𝑜𝑠𝜃)

(𝑅0+𝜌𝑐𝑜𝑠𝜃)
,    

𝐵𝜃
(𝑚)

=
𝐵0

2𝛼𝑅0(𝑅0+𝜌𝑐𝑜𝑠𝜃)
[2𝛼𝑅0

2𝐽1 − 𝑅0𝑐𝑜𝑠𝜃(𝐽0 − 𝛼𝜌𝐽1) + 𝜌(2𝐽0 − 𝛼𝜌𝐽1)𝑐𝑜𝑠2𝜃],    

𝐵𝜑
(𝑚)

= 𝐵0𝐽0(1 − 𝜌𝑐𝑜𝑠𝜃/2𝑅0).       (3) 

The modified solution is also approximate (𝜌0/𝑅0 ≪ 1) and exactly satisfies the solenoidal 

condition. 

Figures c, d) present the same as Figures a, b) for the modified Miller and Turner solution. 

The comparison of the figures shows that the Miller and Turner solution and the modified one are 

slightly different. 

2.3 Romashets and Vandas solution 

To calculate the magnetic field, the authors used the toroidal coordinate system [9], its 

parameters are related with the parameters of the Cartesian system as 

𝑥 =
𝑎 𝑠𝑖𝑛ℎ𝜇 𝑐𝑜𝑠𝜑

𝑐𝑜𝑠ℎ𝜇−𝑐𝑜𝑠𝜂
,   𝑦 =

𝑎 𝑠𝑖𝑛ℎ𝜇 𝑠𝑖𝑛𝜑

𝑐𝑜𝑠ℎ𝜇−𝑐𝑜𝑠𝜂
,   𝑧 =

𝑎 𝑠𝑖𝑛𝜂 

𝑐𝑜𝑠ℎ𝜇−𝑐𝑜𝑠𝜂
.    (4) 

Here 𝑎 is the coordinate system parameter, which is determined by size of a chosen torus 

𝑟0 = 𝑎/𝑠𝑖𝑛ℎ𝜇0,  𝑅0 = 𝑎𝑐𝑜𝑠ℎ𝜇
0

/𝑠𝑖𝑛ℎ𝜇
0
, 𝑅0/𝑟0 = 𝑐𝑜𝑠ℎ𝜇0, 𝑎 = √𝑅0

2 − 𝑟0
2 = 𝑟0√(𝑅0/𝑟0)2 − 1, 

where 𝑟0, 𝑅0 are the cross-section and torus axis radii, respectively. The parameters are 

determined by 𝜇 ≥ 𝜇0, 0 ≤ 𝜂 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 2𝜋, where 𝜇0 corresponds to surface of a chosen 

torus. 
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The solution can be presented by the following equations 

𝐵𝜇 = 0, 𝐵𝜂 = −𝐵0
𝜀 𝑐𝑜𝑠ℎ𝜇 (𝑐𝑜𝑠ℎ𝜇−𝑐𝑜𝑠𝜂)

2𝑠𝑖𝑛ℎ3𝜇
𝐹1, 𝐵𝜑 = 𝐵0

𝑐𝑜𝑠ℎ𝜇−𝑐𝑜𝑠𝜂

𝑠𝑖𝑛ℎ𝜇 
𝐹0,    (5) 

where 𝐹0 = 𝐹(𝛼0, 𝛽0, 𝛾0, 𝜉), 𝐹1 = 𝐹(1 + 𝛼0, 1 + 𝛽0, 1 + 𝛾0, 𝜉) are hypergeometric 

functions, 𝛼0 = (1 + √1 − 4𝜀2)/4, 𝛽0 = (1 − √1 − 4𝜀2)/4, 𝛾0 = 1, 𝜉 = −𝑠𝑖𝑛ℎ2𝜇. 

All surfaces with 𝜇 = 𝑐𝑜𝑛𝑠𝑡 are coordinate surfaces (toroids) in the toroidal coordinate 

system. The surface with 𝜇 = 𝜇0 coincides with the surface of a chosen torus and the surfaces 

with 𝜇 > 𝜇0 describe the toroids located inside a chosen torus. The surface with 𝜇 → ∞ 

degenerates into the torus axis. Solution (5) presents the magnetic field having two components 

whose field lines are located on the surface of the toroids. The hypergeometric function on the 

torus surface of 𝐹(𝛼0, 𝛽0, 𝛾0, −𝑠𝑖𝑛ℎ−2𝜇0) is used to determine values 𝜀. As can be seen from (5), 

in this case 𝐵𝜑 is zero on the torus surface. This condition is similar to that using the first root of 

the zero-order Bessel function in the Lundquist solution. 

The ratios between the magnetic field components of the Cartesian and toroidal systems are 

obtained from  

�⃗⃗� = 𝑖𝑥⃗⃗⃗ ⃗𝐵𝑥 + 𝑖𝑦⃗⃗⃗⃗ 𝐵𝑦 + 𝑖𝑧⃗⃗ ⃗𝐵𝑧 = 𝑖𝜂⃗⃗⃗⃗ 𝐵𝜂 + 𝑖𝜑⃗⃗ ⃗⃗ 𝐵𝜑, 𝑑𝑟 = 𝑖𝑥⃗⃗⃗ ⃗𝑑𝑥 + 𝑖𝑦⃗⃗⃗⃗ 𝑑𝑦 + 𝑖𝑧⃗⃗ ⃗𝑑𝑧 = 𝑖𝜂⃗⃗⃗⃗ ℎ𝜂𝑑𝜂 +

𝑖𝜑⃗⃗ ⃗⃗ ℎ𝜑𝑑𝜑, 

taking into account that the magnetic field in the toroidal system has 2 components (𝐵𝜇 =

0). Unit vectors of the coordinate systems are related as 

𝑖𝜂⃗⃗⃗⃗ =
1

ℎ𝜂
(𝑖𝑥⃗⃗⃗ ⃗

𝜕𝑥

𝜕𝜂
+ 𝑖𝑦⃗⃗⃗⃗

𝜕𝑦

𝜕𝜂
+ 𝑖𝑧⃗⃗ ⃗

𝜕𝑧

𝜕𝜂
), 𝑖𝜑⃗⃗ ⃗⃗ =

1

ℎ𝜑
(𝑖𝑥⃗⃗⃗ ⃗

𝜕𝑥

𝜕𝜑
+ 𝑖𝑦⃗⃗⃗⃗

𝜕𝑦

𝜕𝜑
), 

where ℎ𝜂, ℎ𝜑 are the Lame coeffitients. 

We calculate the partial derivatives using (4) and obtain 

𝐵𝑥 = 𝐵𝜂 𝑠𝑖𝑛ℎ𝜇 𝑠𝑖𝑛𝜂 𝑐𝑜𝑠𝜑/(𝑐𝑜𝑠ℎ𝜇 − 𝑐𝑜𝑠𝜂) − 𝐵𝜑𝑠𝑖𝑛𝜑, 

𝐵𝑦 = 𝐵𝜂 𝑠𝑖𝑛ℎ𝜇 𝑠𝑖𝑛𝜂 𝑠𝑖𝑛𝜑/(𝑐𝑜𝑠ℎ𝜇 − 𝑐𝑜𝑠𝜂) + 𝐵𝜑𝑐𝑜𝑠𝜑, 

𝐵𝑧 = 𝐵𝜂 (𝑐𝑜𝑠ℎ𝜇 𝑐𝑜𝑠𝜂 − 1)/(𝑐𝑜𝑠ℎ𝜇 − 𝑐𝑜𝑠𝜂). 

Figures e, f) show the same as Figures a, b). As can be seen, the region with the maximum 

magnetic field strength is shifted toward the torus center. The ratio between the magnetic field 

strengths at the torus axis and surface is limited by 10. The inhomogeneous distribution of the 

toroidal magnetic field increases with decreasing of 𝑅0/𝜌0. Figure g, h) show the same as Figure 

a-f) with of 𝑅0/𝜌0 = 1.5. 

2.4 Integral model 

Romashets and Vandas constructed the toroidal magnetic field using the Lundquist solution 

[10]. A generating torus has the cross-section radius of 𝜌0 and the axis radius of 𝑅0. The torus axis 

is located in the plane X0Y of the laboratory Cartesian coordinate system and the torus center 

coincides with the system center. They add auxiliary cylinders with the cross-section radius of 𝜌0, 

whose axes are located in the plane X0Y and are the tangent to the radius circle of 𝑅0, where 𝑅0 

is the torus axis. The magnetic field inside and outside the cylinder is the Lundquist solution. 

The toroidal field is formed by the superposition of the magnetic fields of the auxiliary 

cylinders with the the angular size dφ: 

𝐵𝑥 = −𝐵0 ∫ (𝐽1𝑧𝑐𝑜𝑠𝜑/𝜌 − 𝐽0𝑠𝑖𝑛𝜑)𝑑𝜑
2𝜋

0
, 𝐵𝑦 = −𝐵0 ∫ (𝐽1𝑧𝑠𝑖𝑛𝜑/𝜌 − 𝐽0𝑐𝑜𝑠𝜑)𝑑𝜑

2𝜋

0
, 𝐵𝑧 =

𝐵0 ∫ (𝐽1(𝑥𝑐𝑜𝑠𝜑 − 𝑦𝑠𝑖𝑛𝜑 − 𝑅0)/𝜌)𝑑𝜑
2𝜋

0
, where 𝜌 = √𝑧2 + (𝑥𝑐𝑜𝑠𝜑 − 𝑦𝑠𝑖𝑛𝜑 − 𝑅0)2 (6) 
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The Lundquist solution describes a force-free magnetic field with a constant value of α, all 

the fields of the auxiliary cylinders are also force-free fields with the same value of α, hence the 

superposition of the fields (6) is a force-free field with the same value α. 

The properties of the magnetic field are shown in Figures i, j). As can be seen, the magnetic 

field is located outside the torus, the projections of the field lines on the cross-section are 

significantly different from the circular ones. The ratio between the magnetic field strengths at 

the torus axis and surface is limited by 5. Not all ratios allow to obtain MFR, field lines on the 

outer surface do not have a zero step. 
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Figure: Magnetic field distribution in the cross-section plane and the projections of field 

lines on this plane located on the surface of toroids (a, c, e, g, i). The white curves denote radii of 

toroids with step 0.2𝜌0. The white circle is the torus axis. The black curves denote isolines, which 

bound regions with equal magnetic field magnitude. Projections of field lines located on the 

surface of toroids on X0Y plane (b, d, f, h, j). The green, red, black curves correspond the toroids 
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with radii 0.95𝜌0, 0.6𝜌0, 0.2𝜌0, respectively . The aspect ratio is 𝑅0/𝜌0 = 5 (a-f), 𝑅0/𝜌0 = 1.5 

(g-h) and 𝑅0/𝜌0 = 6 (i-j). 

3. Conclusions 

The Miller & Turner solution and the modified solution are slightly different. Due to 

approximation of the solutions, the ratio between the magnetic field strengths at the torus axis and 

surface is limited by 2. The magnetic field in the Romashets, Vandas solution is essentially 

asymmetric. The ratio is limited by 10. The asymmetry and inhomogeneity of the magnetic field 

increase with decrease of the torus axis. For the integral solution, the ratio is limited by 5 and 

MFR it can be obtained not for any ratios. 

 

The work is supported by Russian Foundation for Basic Research (Project №15-42-05085-

р_восток_а). 
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