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Precipitation Induced lonization) is presented. The madlelvs one to calculate atmospheric
ionization induced by precipitating electrons. The modebased on pre-computed with high-
precision ionization yield functions, which are obtainesing full Monte Carlo simulation of
electron propagation and interaction in the Earth’s atrhesp, explicitly considering all physical
processes involved in ion production. The simulations werdormed using GEANT 4 simu-
lation tool PLANETOCOSMICS with NRLMSISE 00 atmospheric deb. A quasi-analytical
approach, which allows one to compute the ionization yitddsvents with arbitrary incidence is
also presented. Itis compared with Monte Carlo simulatamsgood agreement between Monte
Carlo simulations and quasi-analytical approach is aetiev
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1. Introduction

Different types and populations of high energy particlesiavolved in the atmospheric ion-
ization [1, 2]. The energetic particles (EPs) are the maurees of ionization below 100 km. At
altitudes above 100 km dominate the contribution of solarddd X-rays, which are absorbed be-
low. Energetic precipitating particles include galactisimic rays (GCRS), solar energetic particles
(SEPs), precipitating protons, relativistic electroranirradiation belts, auroral electrons. In this
work we focus on relativistic electrons, while other sosraee considered elsewhere.

The precipitating electrons ionize the atmosphere, spadifiit's upper polar part. Effects due
to electron precipitation are usually observed in the almone [3]. However, occasionally rela-
tivistic electron precipitation can occur also in sub-aaraone as well as in middle latitudes [4, 5].
In general, electrons precipitate into the atmosphere fildfarent regions of the magnetosphere
due to various mechanisms [6, 7, 8, 9, 10, 11]. There areaes@nospheric processes affected by
the impact ionization as well as processes related to gkleatric circuit and minor constituents
in the Earth’s atmosphere [12, 13, 14, 15]. In the upper fatt@atmosphere the impact ioniza-
tion is governed by the direct ionization, while in the lovpart of the atmosphere dominates the
secondary ionization mostly due to Bremsstrahlung ramtiathenceforth Bremsstrahlung).

The majority of studies are focused at heights of about 6&+s8@bove the sea level (a.s.l.),
which correspond to precipitating electrons of about 100-KeV. However, the contribution of
relativistic electron precipitation is not discussed noe tdditional Bremsstrahlung ionization.
Here, we present a model based on Monte Carlo simulatioreofoputation of ionization induced
by relativistic electron precipitation explicitly takingto account Bremsstrahlung.

2. CRAC:EPII model

In this study, the propagation and interaction of high epgnmtons with the atmosphere are
simulated using the PLANETOCOSMICS code [16]. We employNIRLMSISE 00 atmospheric
model [17]. Here, we use a previously developed formalisna gfeld function [18]. The ion
production rate in the atmosphere is obtained as an intefjithk product of the primary particle
spectrum and the pre-computed yield function defined as:

JE(X,E)
Y(x,E) = TEodx
wheredE is the energy deposition in atmospheric lag&rat depthx, averaged per primary particle
with kinetic energyE, andE;j,,=35 eV is the average energy necessary for production ofran io
pair in air [19]. The computations were carried out in thergngange of precipitating electrons
between 20 keV and 500 MeV. and at atmospheric depths fromI&5 g/cn? (about 200 km
a.s.l.) to the sea level (1033 g/&n An example of ionization yields for electrons is shown in
Fig.1 (isotropic incidence) and Fig.2 (various incidenc&he ionization yield functior¥ (x,E)
convoluted with a primary particle spectrum gives the iomdoiction rate q(x) at a given deptias

2.1)

() = [ I0)Y (hK)p(h)dK (22)

where J(K) is the differential energy spectrum of the priynaarticles with energi.
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Figure 1: lonization yields vs. altitude due to isotropicidence of monoenergetic electrons in the
energy range 100 keV-100 MeV, as denoted in the legend.
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Figure 2: lonization yelds vs. altitude [km] of electron WwitO MeV energy for isotropic and
various angles of incidence as denoted in the legend.

3. Computation of ionization induced by EPswith arbitrary incidence

On the basis of a quasi-analytical approach, based on rewation of vertically derived
ionization yields, we can compute the ionization yieldsdweents with arbitrary incidence, details
are given elsewhere [20]. The ionization yie¥ggx', K) for a monoenergetic electrons with energy
K and with angle of incidence is calculated:

Yo (X, K) =Y(X,K)/cosa, (3.1)

whereX is the rescaled atmospheric depth, calculated=as/ cosa andY (x,K) is the ionization
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yields for electrons with vertical incidence computed with CRAC:EPII model at deptk details
given elsewhere[21, 22]. Let the intensity of electrond(is, a, ) = Jf(a, @) wherea and ¢

are the the zenith and azimuth angles of incident electrowsJais unit flux and the angular

distribution is normalized to 1 i.ef(f"ffr/izsinadad(p = 1. The flux of electrons within a solid

angledQ = sinadadgis

dF(K) =J(K)f(a,@)sina cosadade (3.2)
Accordingly the total flux of electrons B(K) = A-Jo(K), whereA= [Z" [& f (a, ) cosad cosad.
Hence the ion production rate at deptls:
2 rl
[(x,K) :p(h)/ / Jo(K)Ya (%K) f(a, @) cosadcosadg (3.3)
o Jo
The corresponding ionization yield functiofa(x,K) for particles with arbitrary angular dis-
tribution f (a, @) in a way that (x,K) = Y; (x, K)F (K)p(h), leads to:
1 r2m (1
Yi (X, K) = 3\/ / Yo (X,K)f(a,@)cosadcosadg (3.4)
o Jo

In the case of axial symmetri(a, @) is a function only on the zenith angte Therefore:

T Yy(X, K)d cosa

Yi(X,K) =
K) 3 f(a)cosadcosa

(3.5)

wherex is the rescaled atmospheric depth, calculatexl=ag/ cosa andY, is the ionization yield
function for electrons with vertical incidence. It is easyske that:
n+1

fla)= Hcoé‘a (3.6)

which in case of isotropic incidence (distributiom}0, hencef=1/r leads to:

Yo K) = 2 /0 "\(X.K)dcosa 3.7)

A good agreement between Monte Carlo simulations and thsi-gualytical approach is
achieved (Fig.3)

The yield functionY (x,K) is the response of the atmosphere, the ionization yieldtheo
mono-energetic unit flux of primary particles entering thertB’'s atmosphere. One can see the
essential contribution of Bremsstrahlung in the ionizatjgelds, specifically at depths below 1
g/cn?, which is explicitly considered in the yield function (F4J.The shapes of the ionization
yield functions as a function of the altitude are similar &ole other at depths greater than 5 gfem
but different in the region of the upper atmosphere, whellesgexist due to large fluctuations of
the computed energy deposit and the lack of secondary leattic

The differential ionization functiofr (the integrand of Eq. 2.2, byt(h) term), defined as a
product of the ionization yield function (Fig.4) and a giv@ectrum of primary electrons is shown
in Figure 5 for several atmospheric depths. Here, we consifi@rd electron spectrum from [23],
the details of computation are given elsewhere [21]. Thierdiftial ionization functior allows



Computation of electron precipitation atmospheric iotiaa Alexander Mishev

1MeV 10MeV
55 - 55—t oMeV_
E 50H e=8 Monte Carlo 15° { 50H e=e Monte Carlo 15°
45H=[] calculation 15° 1 45H=[] calculation 15°
% 40 i 1 a0} ’
5 35 {1 35}
2 30 4 30F
s 25 { 25l
< 20 4 20}
15 — 15
55 . 55 .
— 50 e=® Monte Carlo 30° 1 50He=e Monte Carle 30°
E [=[] Calculation 30° = 33 [ =[] Calculation 30°
2 1 35}¢
2 4 30}
= {1 25}
< 4 20}k
15

Figure 3: Comparison of ionization rates due to electronh warious angle of incidence and
energy as denoted in the legend, computed with quasi-&ellgpproach Eq. (4) and PLANE-
TOCOSMICS. The left hand panels denote electrons with gnktgeV, while right hand denote
electrons with energy 10 MeV.
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Figure 4: lonization yield function for precipitating etemns with vertical incidence at several
depths as denoted in the legend. The curves are smoothethevaymputed data points.

one to estimate the most effective energy of primaries taéedonization, which strongly depends
on the atmospheric depth. Here, the integration is overteegy above 20 keV. One can see that
the most effective energy of precipitating electrons taut®lionization strongly depends on the
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Figure 5: Differential ionization functioR for precipitating electrons at several depths as denoted
in the legend.

atmospheric depth. The ionization at depth of about 5 §lsrdominated by electrons with energy
of about 10 MeV, accordingly at depth of about 10 g?dmgoverned by particles with energy of
about 200 MeV. The maximum shifts to higher energies withrekesing the altitude (increasing
the depth). At depths of about 15 g/éie differential ionization functiofr flattens, because of
the diminishing number of high energy precipitating elecs:.

4. Conclusion

Here, we have presented an upgraded full numerical model@RRII, which allows one to
compute the ion production in the Earth’s atmosphere duglativistic and high energy precipitat-
ing electrons. The model is based on a full Monte Carlo sitiaria of propagation and interaction
of precipitating electrons with the air using the PLANETO&ICS code. The model allows one
to perform computations of ion production in the whole atpiese, specifically in the stratosphere
over the Globe. In fact, the model is an extension of cosnyiéaaization model CRAC. A conve-
nient quasi-analytical approach for computation of thezation yields for particles with arbitrary
incidence, based on re-computation of vertically derivauization yields is presented. A good
agreement of the approach with direct simulations is a€hiev
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