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Lattice QCD calculations of hadronic matrix elements allow one to draw inferences about quark
flavor interactions from measurements of hadron decays. Within the context of the Standard
Model, the magnitude of the charm-bottom quark coupling Vcb can be determined from semilep-
tonic decays such as B→D(∗)`ν . This brief review summarizes the present status and short-term
outlook for determining |Vcb| using lattice QCD.
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1. Introduction

At this workshop the CKM matrix element Vcb needs no introduction. Its present estimates
are summarized in Fig. 1. The most precise determination of |Vcb| using an exclusive decay mode
comes from combining experimental results for B→ D∗`ν with the relevant form factor at zero
recoil [1, 2].1 With similar precision, one can infer |Vcb| from inclusive semileptonic b→ c decays
using an operator product expansion [4, 5]. These two values disagree at the 3σ level.
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Figure 1: |Vcb| from different inputs.

The determination of |Vcb| from B →
D`ν decay has been less precise due to larger
experimental uncertainties. Figure 1 shows
the published results from two collaborations
[6, 7]. The FLAG combined fit of the lat-
tice results [8] including new experimental
results [9] is also shown. The fact that the
B → D`ν |Vcb| determinations lie between
those from B→D∗`ν and B→ Xc`ν implies
that the explanation for the discrepancy is not
due to new physics manifesting itself as a
new right-handed interaction. Such an effect
would cause the B→ D`ν determination to
be the outlier, since only the vector current
contributes to this decay.

Below I discuss a few more details about
published work on this topic, and I review the status of calculations in progress. First I wish to give
a brief survey of some lattice QCD details.

2. Survey of methods

The choice of discretization of the Dirac Lagrangian (or action) is a crucial decision one
makes when carrying out a lattice QCD (LQCD) calculation. Figure 2 summarizes (in part) the
unquenched lattice configurations relevant for recent and present calculations of |Vcb|; each graph
corresponds to a different lattice action. The plots show the pion mass, a proxy for the light quark
mass input into the calculation, against the lattice spacing inferred by requiring some dimensionless
lattice output be equal to its physical value. Both quantities enter the plot squared, making extrap-
olation to the physical limit roughly linear. For B decays, effects of discretization and unphysical
quark mass have been the most sensitive to get under control. Of course one needs to ensure other
systematic errors, such as finite volume effects, are also quantified.

The LQCD results used in Fig. 1 were all obtained using improved versions of the staggered
quark action, using the MILC AsqTad configurations. Staggered quarks are computationally inex-
pensive and can be improved to have small discretization errors; however, an additional assumption
is required to include a number of sea quarks which is not a multiple of 4. There is a body of liter-
ature discussing this approach, and the empirical evidence supports its soundness.

1Note a new B→ D∗`ν result, (37.4±1.3)×10−3, from Belle recently appeared [3].
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Figure 2: Plots showing the pion masses and lattice spacings for unquenched gauge field configurations
with n f flavours of sea quarks. Each plot corresponds to a separate ensemble of configurations, differing
most significantly in the choice of fermion discretization (see text). The red dashed line corresponds to the
physical pion mass.

The ETM collaboration use twisted mass quarks, an improved variant of Wilson’s action.
The RBC-UKQCD collaboration use domain wall quarks. The plots in Fig. 2 hint at some of the
advantages and disadvantages of the different formulations. The (relative) efficiency of staggered
fermions allows for calculations to be done with many different sets of input parameters. The
high level of improvement possible with staggered actions, first the AsqTad variant then HISQ,
mean that discretization errors are greatly reduced at larger values of the lattice spacing. Twisted
mass fermions have sizable discretization errors, so calculations with smaller values of a have been
necessary. Domain wall quarks are computationally expensive; however, there is strong motivation
to invest heavily in this approach since they have the continuum-like chiral and flavor symmetries.

Heavy quarks on the lattice provide another challenge. The energy scale at which discretization
errors typically become large is given by the inverse lattice spacing. The charm quark mass is at
or below this scale, and the bottom quark mass is significantly higher. Effective field theories have
been used to make progress, especially for b quark physics. Until recently, the Fermilab approach
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to heavy quarks has been only one used to pursue high precision lattice QCD calculations of b→ c
matrix elements. With the increase in computational power and more highly improved actions,
other approaches are now able to provide independent checks of Fermilab/MILC results.

On the MILC AsqTad lattices, the Fermilab/MILC collaboration constructed correlation func-
tions using the same action for the light valence quarks and the Fermilab approach for the c and
b quarks. The HPQCD collaboration used the more highly improved, HISQ version of the stag-
gered action for the valence quarks (both light and charm), using nonrelativistic QCD (NRQCD)
for the b quark. A subset of the MILC AsqTad configurations were used by HPQCD, while Fermi-
lab/MILC used the whole set. Both groups have used their data to refine the Standard Model pre-
diction for R(D) the ratio of B→ Dτν to B→ D`ν branching fractions (where `= e,µ) [10, 6, 7].
Fermilab/MILC have also used their form factors to estimate the neutral B meson fragmentation
functions, of use in extractions of the rate for B0

s → µ+µ− [11].
The Paris group have used the ETM twisted-mass configurations (Fig. 2) to calculate the Bs→

Ds`ν form factors near zero recoil [12]. They interpolate a well-chosen ratio between a known
result in the static limit and lattice calculations performed with charm-like masses for the b. Their
quoted results, e.g. for the form factor extrapolated to zero recoil, are consistent with those obtained
on MILC lattices, albeit with much larger uncertainties.

Baryonic decays also play a role in over-constraining |Vcb|. LHCb has measured the ratio of
branching fractions B(Λb → p`ν)/B(Λb → Λc`ν) [13] which, when combined with LQCD de-
terminations of the corresponding form factors [14], constrains |Vub/Vcb| to be 0.083(4)stat(4)sys.
Combining this with |Vub|, as determined from B→ π`ν decay [8] gives |Vcb|= 0.044(3), in some-
what better agreement with the higher values plotted in Fig. 1. Using the inclusive determination
of |Vub| would imply an even larger value for |Vcb|.

3. Ongoing work

At the Lattice 2016 symposium, there were several talks reporting on calculations underway.
The HPQCD collaboration are completing an analysis of the Bs → Ds form factors [15], on the
MILC AsqTad ensembles. In the future, HPQCD and Fermilab/MILC plan to extend their study
of the B(s)→D(s) form factors on the MILC HISQ ensembles, reducing discretization, quark mass
extrapolation, and other uncertainties.

HPQCD are in the final stages of calculating the B→ D∗ form factor hA1(w) at zero recoil,
w = 1 [16]. This calculation has been done using the MILC HISQ lattices, so it will be the first
new result statistically independent from the Fermilab/MILC calculations, providing an important
check of the discrepancy shown in Fig. 1.

By using two formulations for the b quark, NRQCD and heavy HISQ, to compute the Bc→ ηc

and Bc→ J/ψ form factors, the HPQCD collaboration have a nonperturbative means to determine
the normalization of the NRQCD currents [17]. This provides an opportunity to quantify and
possibly reduce a dominant uncertainty in NRQCD calculations.

The RBC-UKQCD collaboration presented preliminary results for the Bs → Ds form factors
using domain wall fermions for light and charm quarks plus the RHQ variant of the Fermilab action
for the bottom quark [18]. They plan to extend their work to include all B(s)→ D(∗)

(s) form factors.
These will be useful since the methods used are different from Fermilab/MILC and HPQCD.
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The calculation of the B→D∗ form factors away from zero recoil is something several groups
are pursuing. The main motivation is to have better control over fits to the shape of the differential
branching fraction. To date, |Vcb| has been obtained by fitting the experimental data and extrapo-
lating to zero recoil, at which point the lattice calculation described above gives the normalization.
Recent experience extracting |Vub| and |Vcb| has underscored the efficacy of using both lattice and
experimental information over a range of lepton invariant mass q2. The challenges extending this
method to the vector meson final state come from having to determine more form factors, and to
overcome larger statistical errors in the lattice calculations. It is likely that progress will first come
for the Bs→D∗s form factors, making a measurement of the Bs→D∗s `ν differential decay rate very
desirable. Eventually these calculations will also refine the Standard Model prediction for the τ/`

final state ratio R(D∗).
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