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Analytic results for two-loop Yang-Mills David C. Dunbar

1. Introduction

There has been excellent progress in computing the matrix elements for 2 −→ 2 NNLO pro-

cesses which together with work on factorisation has led to robust predictions for many processes.

For higher point matrix elements there has been very limited progress except in highly symmetric,

particularly supersymmetric, theories and indeed the only for four points are the two-loop QCD

amplitude known for all helicities [1, 2, 3]. Beyond four point the five-point all-plus amplitude

which recently constructed using generalised unitarity techniques [4] followed by integration [5].

In this talk, it was shown how, for this very specific helicity configuration, the singular structure of

the amplitude can be used to determine the two loop-amplitude. Specifically we have re-computed

the five-point case [6] and obtained results for the six and seven-point all-plus amplitudes [7, 8].

The all-plus helicity amplitude at leading colour may be written

An(1
+,2+, ...,n+)|leading color = gn−2 ∑L≥1

(

g2NccΓ

)L
×∑σ∈Sn/Zn

tr(T aσ(1)T aσ(2)T aσ(3) · · ·T aσ(n))

×A
(L)
n (σ(1)+,σ(2)+, ...,σ(n)+) (1.1)

and it is A
(2)
n (1+,2+, · · · ,n+) which is the subject of this talk. This helicity amplitude vanishes at

tree level and consequently has a purely rational one-loop expression to order ε given by [9]

A
(1)
n (1+,2+, · · · ,n+) =−

i

3
∑

1≤k1<k2<k3<k4≤n

〈k1 k2〉 [k2 k3]〈k3 k4〉 [k4 k1]

〈12〉 〈23〉 · · · 〈n1〉
+O(ε) . (1.2)

while the all-ε forms of the one-loop amplitudes are given in terms of higher dimensional scalar

integrals [10]. and for n ≤ 6 are [10]

A
(1)
4 (1+,2+,3+,4+) =

2iε(1− ε)

〈12〉 〈23〉 〈34〉 〈41〉
× s12s23ID=8−2ε

4 ,

A
(1)
5 (1+,2+,3+,4+,5+) =

iε(1− ε)

〈12〉 〈23〉 〈34〉 〈45〉 〈51〉

×
[

s23s34I
(1),D=8−2ε
4 + s34s45I

(2),D=8−2ε
4 + s45s51I

(3),D=8−2ε
4

+ s51s12I
(4),D=8−2ε
4 + s12s23I

(5),D=8−2ε
4 +(4−2ε)ε(1,2,3,4)ID=10−2ε

5

]

,

A
(1)
6 (1+,2+,3+, 4+ ,5+,6+) =

iε(1− ε)

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈61〉

1

2

[

− ∑
1≤i1<i2≤6

tr[/ki1
/Ki1+1,i2−1/ki2

/Ki2+1,i1−1]I
(i1,i2),D=8−2ε
4 +(4−2ε) tr[123456] ID=10−2ε

6

+(4−2ε)
6

∑
i=1

ε(i+1, i+2, i+3, i+4)I
(i),D=10−2ε
5

]

, (1.3)

where I
(i),D
m denotes the D dimensional scalar integral obtained by removing the loop propaga-

tor between legs i− 1 and i from the (m+ 1)-point scalar integral etc. [11], /Ka,b ≡ ∑b
i=a /ki and

ε(a,b,c,d) = [ab] 〈bc〉 [cd] 〈d a〉− 〈ab〉 [bc] 〈cd〉 [d a].
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2. Techniques

We will attempt to compute the amplitude purely from the singularities much in the tradition

of S-matrix theory [12]. Specifically we will consider

• IR and UV singular structure under regularisation

• Unitarity

• Factorisation

Regularisation structure. The IR and UV behaviours of the two-loop amplitude in dimensional

regularisation are known [13] and for this amplitude motivates a partition:

A
(2)
n (1+,2+, ...,n+) = A

(1)
n (1+,2+, ...,n+)I

(2)
n + F

(2)
n +O(ε) . (2.1)

where

I
(2)
n =

[

−
n

∑
i=1

1

ε2

(

µ2

−si,i+1

)ε
]

(2.2)

In this equation A
(1)
n is the all-ε form of the one-loop amplitude. There are no ε−1 terms in this

expression (outside of In) although the amplitude has both a UV divergence and a collinear IR

divergence [14]. However since the tree amplitude vanish both are proportional to n and cancel

leaving only the infinities within I
(2)
n which are the soft IR singular terms. The finite remainder

function F
(2)
n can be split into polylogarithmic and rational pieces,

F
(2)
n = P

(2)
n +R

(2)
n . (2.3)

Unitarity. D-dimensional unitarity techniques can be used to generate the integrands [4] for the

five-point amplitude which can then be integrated to give the result [5]. However the organisa-

tion of the amplitude in the previous section allows us to obtain the finite polylogarithms using

four-dimensional unitarity [15, 16] where the cuts are evaluated in four dimension with the cor-

responding simplifications. With this simplification the all-plus one-loop amplitude effectively

becomes an additional on-shell vertex and the two-loop cuts effectively become one-loop cuts with

a single insertion of this vertex. The non-vanishing four dimensional cuts are shown in fig. 1.

The cuts allow us to determine the coefficients of box and triangle functions to the amplitude.

These contain both IR terms and finite polylogarithms. The IR terms combine overall [17],

∑CiI
2m
4,i

∣

∣

∣

∣

IR

+∑CiI
2m
3,i +∑CiI

1m
3,i = A

(1),ε0

n (1+,2+, · · · ,n+)× In (2.4)

where A
(1),ε0

n (1+,2+, · · · ,n+) is the order ε0 truncation of the one-loop amplitude. A key step is

to promote the coefficient of these terms to the all-ε form of the one-loop amplitude. This ensures

that the two-loop amplitude has the correct singular structure.

The remaining parts of the box integral functions become the polylogarithms. The full expres-

sion for P
(2)
n is [17] is

P
(2)
n =−

i

3〈12〉 〈23〉 〈34〉 · · · 〈n1〉

n

∑
i=1

n−4

∑
r=1

cr,iF
2m
n:r,i (2.5)

2



P
o
S
(
R
A
D
C
O
R
2
0
1
7
)
0
2
6

Analytic results for two-loop Yang-Mills David C. Dunbar

a)

+

+

+

+

+

+

−
+

− +

−
+

− +

b)

+

+

++

+

+

−

+

−

− +

c)

++

+

−

+

−

− +
+ −

d)

+

+

+

+

−

−

+

+

Figure 1: Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus one-loop vertex

(indicated by • )

where

cr,i =

(

∑
a<b<c<d∈K4

tr−[abcd]− ∑
a<b<c∈K4

tr−[abcK4]+ ∑
a<b∈K4

〈i−1|K4abK4|i+ r〉

〈i−1 i+ r〉

)

, (2.6)

F2m
n:r,i = F2m[t

[r+1]
i−1 , t

[r+1]
i , t

[r]
i , t

[n−r−2

i+r+1 ] , (2.7)

t
[r]
i = (ki + ki+1 + · · ·+ ki+r−1)

2 and

F2m[S,T,K2
2 ,K

2
4 ] = Li2[1−

K2
2

S
]+Li2[1−

K2
2

T
]+Li2[1−

K2
4

S
]

+ Li2[1−
K2

4

T
]−Li2[1−

K2
2 K2

4

ST
]+Log2(S/T )/2 . (2.8)

Factorisation. The remaining part of the amplitude is the rational R
(2)
n . As a rational function

we may wish to obtain this via recursion provided we can control its singularities. We wish to

use complex recursion to determine R(z). Britto-Cachazo-Feng-Witten recursion [18] exploited

the analytic properties of n-point tree amplitude under a complex shift of its external momenta to

compute the amplitude. The momentum shift introduces a complex parameter, z, whilst preserving

overall momentum conservation and keeping all external momenta null. Possible shifts include the

original BCFW shift which acts on two momenta, say pa and pb, by

λ̄a → λ̄â = λ̄a − zλ̄b,λb → λb̂ = λb + zλa , (2.9)

and the Risager shift [19] which acts on three momenta, say pa, pb and pc, by shifting λa

λa → λâ = λa + z [bc]λη , (2.10)

and cyclically λb and λc. In the last case λη must satisfy 〈aη〉 6= 0 etc., but is otherwise uncon-

strained. After applying the shift, the rational quantity of interest is a complex function parametrized

by z i.e. R(z). If R(z) vanishes at large |z|, the Cauchy’s theorem applied to R(z)/z over a contour

at infinity implies

R = R(0) =− ∑
z j 6=0

Res
[R(z)

z

]∣

∣

∣

z j

. (2.11)

3
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Tree amplitudes have simple poles when a shifted propagator vanishes and the corresponding

residues are readily obtained from general factorisation theorems leading to the BCFW recursion

formulae for tree amplitudes [18]. For the rational part of the two-loop all-plus amplitude the

BCFW shift generates a shifted quantity that does not vanish at infinity and so cannot be used to

reconstruct the amplitude (the one-loop all-plus amplitudes also behave in this way). However,

using the Risager shift (2.10) does yield a shifted quantity with the desired asymptotic behaviour.

Also loop amplitudes in non-supersymmetric theories may have double poles in complex momenta.

Mathematically this is not a problem since if we consider a function with a double pole at z = z j

and Laurent expansion,

R(z) =
c−2

(z− z j)2
+

c−1

(z− z j)
+O((z− z j)

0) ,

(2.12)

then the required residue is

Res
[R(z)

z

]
∣

∣

∣

z j

=−
c−2

z2
j

+
c−1

z j

(2.13)

and we can use Cauchy’s theorem provided we know the value of both the leading and sub-leading

poles. The leading pole can be obtained from factorisation theorems, but, at this point, there are no

general theorems determining the sub-leading pole and we need to determine the sub-leading pole

for each specific case.

Figure 2: Diagram containing the leading and sub-leading poles as sab → 0. The axial gauge construction

permits the off-shell continuation of the internal legs.

We determine the sub-leading pole by determining the pole in the diagram shown in fig 2

using an axial gauge formalism. We have used this approach previously to compute one-loop

amplitudes [20, 21, 22]. and labeled this process augmented recursion. The principal helicity

assignment in fig 2 gives the integral

i

(2π)D

∫

dDℓ

ℓ2α2β 2

[a|ℓ|q〉[b|ℓ|q〉

〈aq〉 〈bq〉

〈β q〉2

〈α q〉2
τ
(1)
n (α−,β+,c+, ...,n+) . (2.14)

To determine 2.14 in general we would need to consider τ
(1)
n to be the doubly off-shell one-loop

current. However, as we are only interested in the residue on the sab → 0 pole, we do not need the

full current. This process is detailed in ref. [8]. The resultant sub-leading pole is quite complex

4
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but can be substituted into 2.11 to yield the unshifted R(0). The initial expression, after combining

all factorisation, can be simplified into quite compact forms. We obtain a form for R
(2)
6 that is

explicitly independent of q, has manifest cyclic symmetry and no spurious poles.

R
(2)
6 =

i

9
∑

cyclicperms

G1
6 +G2

6 +G3
6 +G4

6 +G5
6

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈61〉
. (2.15)

where

G1
6 =

scdsd f 〈 f |aKabc|e〉

〈 f e〉 tabc

+
sacsdc〈a| f Kde f |b〉

〈ab〉 tde f

,

G2
6 =

[ab] [ f e]

〈ab〉 〈 f e〉
〈ae〉2 〈 f b〉2 +

1

2

[a f ] [cd]

〈a f 〉 〈cd〉
〈ac〉2 〈d f 〉2 ,

G3
6 =

sd f 〈a f 〉 〈cd〉 [ca] [d f ]

tabc

, G4
6 =

〈a|be| f 〉tde f

〈a f 〉
(2.16)

and

G5
6 = 2s2

ac + s2
eb + sab

(

−3sac −2sad +6sae +4sbc + sbd +2sbe +4sb f +7scd − sce − sde +3sd f

)

+sac

(

2sad +3sae −2sbd − sbe + sc f −
5
2
sd f

)

+ 3
2
sadsbe

−8〈bc〉 [cd]〈d e〉 [eb]+5〈 f a〉 [ac] 〈cd〉 [d f ] , (2.17)

This was confirmed in an subsequent independent calculation [23].

3. The Seven-Point Rational Piece

We have also computed the seven point R
(2)
7 ref. [8]. The seven-point rational piece can be

calculated in an identical fashion. The seven-point current τ
(1)
7 (α−,β+,c+,d+,e+, f+,g+) is built

from the corresponding seven-point single minus amplitude [24] just as the six-point current was

built from the six-point amplitude. R
(2)
6 as determined above is also required for recursion. Defining

G1
7 =

〈ga〉

tabcte f g

(

〈cd〉 [eg] [d|Kabc|e〉[a|Kabc|e〉[c|Kabc| f 〉

〈e f 〉
−

〈d e〉 [ca] [d|Ke f g|c〉[g|Ke f g|c〉[e|Ke f g|b〉

〈bc〉

+
〈e f 〉 〈cd〉 [ca] [ f g] [e|Ke f g|a〉[d|Ke f g|b〉

〈ab〉
−

〈bc〉 〈d e〉 [eg] [ab] [c|Kabc|g〉[d|Kabc| f 〉

〈 f g〉

)

,

G2
7 =

1

tabcte f g

scdsde 〈ga〉 [g|Ke f gKabc|a] ,

G3
7 =

1

tcde

(

sce

(

se f 〈c|KabK f ga|d〉

〈cd〉
−

sbc〈e|K f gKgab|d〉

〈d e〉

)

+
〈e f 〉 〈bc〉 [ f b] [c|Kcde|g〉[e|Kcde|a〉

〈ga〉

+
〈bc〉 [c|Kcde|b〉[e|Kcde|a〉[b|K f g|e〉

〈ab〉
+

〈e f 〉 [e|Kcde| f 〉[c|Kcde|g〉[ f |Kab|c〉

〈 f g〉

)

,

5
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G4
7 =

[ga]

〈ga〉
〈ge〉 〈ae〉

(

[d e]

〈d e〉
〈d g〉 〈d a〉+

[e f ]

〈e f 〉
〈 f g〉 〈 f a〉

)

,

G5
7 =

1

tcde

(

[ce] (〈e f 〉 [d f ] 〈c|KabK f ga|d〉+ 〈bc〉 [d b] 〈e|K f gKgab|d〉)

+〈bc〉 〈e f 〉 (2〈ga〉 [ce] [ f g] [ab]+ [b f ] [e|KabK f g|c]
)

,

G6
7 =

1

〈ga〉
(〈g| f Kbc|a〉te f g −〈a|bKe f |g〉tabc)

G7
7 = s2

b f −2s2
ga −3sdbsd f +4sdasdg −6sacseg +7(sebs f c + seasgc)+ sabs f g +3s f asgb

+sce(sc f + seb −4(sab + s f g + sga)+5[d|Kga|d〉)

+4[e|bc f |e〉−2[ f |gab| f 〉+3[g|ba f |g〉+2[g|cea|g〉, (3.1)

the full function in this case is

R
(2)
7 =

i

9
∑

cyclic perms

G1
7 +G2

7 +G3
7 +G4

7+G5
7 +G6

7 +G7
7

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈67〉 〈71〉
. (3.2)

This expression has the full cyclic and flip symmetries required and has all the correct factorisations

and collinear limits. It been generated under the assumption that the shifted rational function

vanishes at infinity: if this had been unjustified we would not have generated a function with the

appropriate symmetries. This completes the seven-point calculation: the first seven point helicity

amplitude obtained in QCD.

4. Summary and Prospects

[27] We have been able to use the singularity structure of amplitudes to obtain higher-point

two-loop QCD amplitudes. The methods have avoided complicated two-loop integrations. Cor-

respomding results have been obtained for two-loop gravity where the UV term may be simple

obtained [25]. So far, we have only been able to generate the simplest helicity amplitude by these

methods but have obtained these in compact analytic forms which complement recent progress in

numerical techniques [26, 27] The effort to extend these methods to further helicity configurations

is on-going.
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