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At the time of the INTEGRAL2016 meeting, where the talk summarised here was originally
presented, the LIGO Scientific Collaboration and Virgo Collaboration had announced two confident
and one further probable gravitational-wave detections [1, 2, 3]. Since then, a further discovery has
been announced as of July 2017 [4]. All discoveries to date correspond to mergers of pairs of black
holes, with total masses between ~ 20 and ~ 60 solar masses. This proves that binary black holes
exist; that they merge; and that they are rather heavy, extending to higher masses than any of the
known black holes in X-ray binaries with confident dynamical mass measurements [5, 6].

The high masses of the black holes indicate that the stars that formed them were born in low-
metallicity environments, where stellar winds are suppressed, allowing massive stars to retain more
mass. This could either indicate formation in local low-metallicity pockets, or in the early Universe
with very long delay times between star formation and black hole merger [7].

A black hole merger within the age of the Universe through energy loss by gravitational-wave
emission points to an initial separation was less than about a fifth of an astronomical unit [8]. This
is much smaller than the typical size to which progenitor stars are expected to expand during the
giant phase. This raises a few possibilities for the formation scenario:

e Binaries start in wide orbits in the field, go through one or more mass transfer phases as
the stars expand, and are brought closer (where gravitational-wave emission can be efficient)
when orbital energy is used to eject the common envelope. This classical isolated binary
evolutionary channel has been explored over several decades; a few of the many relevant
references include [9], [10], and [11].

e Massive stars that start in close binaries in low-metallicity environments are kept rapidly
spinning through tidal locking, allowing for efficient mixing and chemically homogeneous
evolution. Such stars fuse nearly all of their hydrogen into helium, do not expand, and form
black holes in situ, close enough for gravitational wave emission to be efficient [12, 13].

e The two black holes could form independently before being brought together by a series of
dynamical encounters in a dense stellar environment. Dynamical formation in either globular
clusters [14, 15] or galactic nuclear clusters [16, 17] could contribute to the population of
LIGO detections.

e More exotic proposed channels include the formation and merger of two black holes during
the collapse of a core of a single very massive star [18] or mergers of primordial black holes
arising from early-Universe cosmological perturbations [19].

The population of gravitational-wave observations of binary mergers, which will grow rapidly
as LIGO detectors become more sensitive, will make it possible to address the inverse problem of
gravitational-wave astrophysics: how to go from a population of observed sources to understanding
key uncertainties about binary evolution?

One possible approach is exploring the large parameter space of astrophysical models to deter-
mine which are consistent with the observed population [20, 21]. Typically, the model predictions
are too expensive to evaluate over the full range of parameters, so this will require the development
of new tools to emulate model predictions [6]. An alternative, weakly-modeled approach is to carry
out clustering on the detected sources in order to search for subpopulations [22, 23].
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By demanding consistent models to explain compact object mergers, supernovae, gamma ray

bursts, Galactic double neutron stars, X-ray binaries including Be X-ray binaries, luminous red

novae, etc., we can move toward a concordance picture of the evolution of massive stars in binaries.
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