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1. Introduction

Physical, measurable cross sections are obtained by convoluting parton-level scattering ampli-
tudes, describing the interaction of the elementary constituents of the colliding hadrons on a smaller
time scale, with universal functions (PDFs) describing the distributions of such partons inside the
protons, which account for evolution phenomena taking place on time scales much longer than the
parton scattering itself.

In the High Energy Factorization (HEF) (aka kT -factorisation) approach [1, 2] to QCD, the
amplitudes entering the calculation of cross sections feature particles with off-shell momenta, due
to a non vanishing transverse component of the partons with respect to the hadron longitudinal
momentum which is taken into account. The importance of the additional contributions thus arising
w.r.t. the collinear case is expected to be increasingly relevant as the energy scale of the hadronic
collision increases, opening up the possibility of having hard scatterings from partons carrying a
small longitudinal component of the proton momentum.

In order for results to be physical, amplitudes need to be gauge invariant, a property whose def-
inition is far form trivial in case there are off-shell legs. A dramatic improvement in the calculation
of on-shell scattering amplitudes has been achieved ever since 2005, when the BCFW recursion
procedure was first introduced, originally for pure Yang-Mills theories [3, 4] and later extended to
include amplitudes with fermions [5]. The question whether this recursion can be generalised to
tree level amplitudes with off-shell partons was solved in [6, 7] and a numerical implementation
of the procedure is available as well [8]. Such novel QCD scattering amplitudes, endowed with
proper generalised Parton Distribution Functions, which we build using the Kimber-Martin-Ryskin
presctiption [9, 10], can be used to extract kT -factorization predictions for pure QCD processes.

The estimation of multi-jet production cross sections is, at the same time, one of the key
backgrounds for the searches of new physics and, in the case of 4 jets, one of the preferential
channels for the prospective observation of Double Parton Scattering. The latter is defined as
the occurrence of two hard (and thus well differentiated from the underlying event) parton-level
scatterings in which both protons involved in the hadron collision contribute two of the four hard
colliding projectiles. If the final state is a 4-parton one, which is thus observed in the detector as
4 jets, then we can use our methods to compute the relevant 2→ 4 and 2→ 2 matrix elements in
order to study how much DPS is expected to contribute both to the total cross sections and to the
differential distributions.

This allows us, in particular, to expand the analysis in [11] and assess the differences between
the collinear approach and the kT -factorization framework.

In the following, we give an overview of the procedure for the computation of gauge-invariant
off-shell scattering amplitudes [6, 7] and subsequently present some selected results of our phe-
nomenological analyses [12, 13].

2. BCFW recursion

2.1 Basic formalism

We always consider scattering amplitudes with all particles outgoing. The momentum kµ can
be decomposed in terms of its light-like direction pµ , satisfying p·k = 0 and, if the particle is
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off-shell, of a transversal part, according to

kµ = x(q)pµ − κ

2
〈p|γµ |q]
[pq]

− κ∗

2
〈q|γµ |p]
〈qp〉

, (2.1)

with qµ an auxiliary light-like 4-momentum

x(q) =
q·k
q·p

, κ =
〈q|k/|p]
〈qp〉

, κ
∗ =
〈p|k/|q]
[pq]

, q · p 6= 0 . (2.2)

The coefficients κ and κ∗ can be shown to be independent of the auxiliary momentum qµ , in the
sense that any other light-like vector q′ can be used in its place, provided k·q′ 6= 0 and

k2 =−κκ
∗ . (2.3)

We consider color-ordered amplitudes, which contain only planar Feynman graphs and are built
with color-stripped Feynman rules. Every scattering amplitude, including the basic 3-point func-
tions with off-shell particles, can be found via the recursion itself, provided one knows 3-point
on-shell amplitudes, which can be built from first symmetry principles. No use of Feynman rules
is necessary at any step. However, the knowledge of the Feynman rules is necessary to identify the
poles in the scattering amplitudes (see below) when applying the recursion. The derivation of such
rules for gluons and fermions can be found in [14, 15].

We will be assuming that the reader is sufficiently familiar with the spinor-helicity formalism,
which is otherwise sketched thoroughly enough in the aforementioned theoretical papers. For every
generally off-shell particle whose momentum is kµ

i , an orthogonal direction pµ

i can be always
constructed by

kµ

1 + kµ

2 + · · ·+ kµ
n = 0 momentum conservation

p2
1 = p2

2 = · · ·= p2
n = 0 light-likeness

p1·k1 = p2·k2 = · · ·= pn·kn = 0 . eikonal condition

In the case of an on-shell particle, direction and momentum are simply the same vector.
The polarisation vectors for gluons can be expressed as

ε
µ

+ =
〈q|γµ |g]√

2〈qg〉
, ε

µ

− =
〈g|γµ |q]√

2[gq]
, (2.4)

where q is the auxiliary light-like vector and g is a short-hand notation for the gluon momentum.
We denote gluon spinors with the numbers of the corresponding particles, whereas quarks and
antiquarks are always indicated by q and q̄ respectively.

2.2 The idea behind BCFW: artificial complex poles

The starting point of the on-shell BCFW recursion relation is Cauchy’s theorem

lim
z→∞

f (z) = 0⇒
∮ dz

2πi
f (z)

z
= 0 , (2.5)
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where the integration contour encloses all the poles of a given rational function f (z) and extends
to infinity, implying that the function at the origin f (0) is given by the sum over the residues at the
single poles in the complex plane,

f (0) =−∑
i

limz→zi f (z)(z− zi)

zi
. (2.6)

Now, if f (z) = A (z), where A (z) is a scattering amplitude which has somehow been turned into
a function of a complex variable without spoiling momentum conservation and on-shellness, it is
enough to identify the single poles in z appearing in some of the propagators in order to reconstruct
the amplitude in terms of simpler building blocks. On the ground of general unitarity requirements,
these are found to be products of lower-point on-shell amplitudes times an intermediate propaga-
tor [3, 4].

Now, in order to make a scattering amplitude a rational function of a complex variable z in a
way that suits the off-shel case as well, two particles are picked up, say i and j, and each particle’s
direction is chosen to be the reference vector for the other, so that their momenta with transverse
component are

kµ

i = xi(p j) pµ

i −
κi

2
〈i|γµ | j]
[i j]

− κ∗i
2
〈 j|γµ |i]
〈 ji〉

kµ

j = x j(pi) pµ

j −
κ j

2
〈 j|γµ |i]
[ ji]

−
κ∗j
2
〈i|γµ | j]
〈i j〉

. (2.7)

Let the shift vector be
eµ =

1
2
〈i|γµ | j] , pi · e = p j · e = e · e = 0 . (2.8)

The shifted momenta are thus

k̂µ

i = ki + zeµ = xi(p j) pµ

i −
κi− z[i j]

2
〈i|γµ | j]
[i j]

− κ∗i
2
〈 j|γµ |i]
〈 ji〉

k̂µ

j = k j− zeµ = x j(pi) pµ

j −
κ j

2
〈 j|γµ |i]
[ ji]

−
κ∗j + z〈i j〉

2
〈i|γµ | j]
〈i j〉

(2.9)

Momentum conservation and either on-shellness or the eikonal conditions pi · k̂i = 0 and p j · k̂ j = 0
are preserved by the shift (2.9). The changes induced in the momenta or in the directions by this
shift are:

eµ =
1
2
〈i|γµ | j]⇔


i off-shell: κ̂i = κi− z[i j]
i on-shell: |î] = |i]+ z| j]

j off-shell: κ̂∗i = κ∗j + z〈i j〉
j on-shell: | ĵ〉= | j〉− z|i〉

(2.10)

It is basic to the BCFW argument that (2.10) implies that the large z behaviours of the polarisation
vectors of shifted gluons are

eµ =
1
2
〈i|γµ | j]⇒ ε

µ

i− ∼
1
z

and ε
µ

j+ ∼
1
z
, (2.11)

whereas the opposite helicity polarisation vectors of shifted gluons stay constant. It is important
for us, in order for our argument to work in general, to include in our amplitudes the propagators
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of the external off-shell particles, who play the same role as the gluon polarisation vectors in the
on-shell case.

Not all of the shift vector choices are suitable to apply the BCFW recursion, because some of
them lead to a violation of the basic hypothesis of the residue theorem

lim
z→∞

A (z) = 0 . (2.12)

However, one legitimate choice always exists, for amplitudes with at least one gluon on the exter-
nal lines, as discussed in the original literature on on-shell amplitudes [4, 5] and later generalised
to the off-shell case as well [6, 7]. So, we can conclude that we have a method to recursively
compute scattering amplitudes with at least one gluon, completely bypassing the rapidly unman-
ageable Feynman diagram computations. As for amplitudes with no gluon, they can be numerically
evaluated by exploiting the Dyson-Schwinger recursion.

2.3 Reconstructing the amplitude from the residues

Our single poles in z always appear due to the vanishing denominators of the gluon or fermion
propagators. Our scattering amplitude A (0) is given by a sum over 4 possible kinds of residues

A (0) = ∑
s=g, f

(
∑
p

∑
h=+,−

As
p,h +∑

i
Bs

i +Cs +Ds

)
. (2.13)

The index s refers to the particle species, namely gluons or fermions; h is the helicity. Kµ will
denote the momentum flowing through the propagators exhibiting poles. The residues for poles in
both gluons and fermions poles are of the following general kinds:

As
p,h are due to the poles which appear also in the on-shell BCFW recursion. The index p

stands for the cyclically ordered partitions of the particles into two subsets; the shifted particles are
never on the same sub-amplitude. The pole is due to an intermediate virtual gluon, whose shifted
momentum squared, K2(z), is on-shell for

z =− K2

2e ·K
.

Bs
i residues are due to poles appearing in specific auxiliary eikonal quark propagators, which

are needed to account for off-shell particles in a gauge-invariant way. Vanishing of the denomina-
tors of the propagators for this eikonal particles means pi · K̂(z) = 0, where K̂ is the momentum
flowing through the propagator. The location of these poles is

z =−2 pi ·K
2 pi · e

.

If the i-th particle is on-shell, these terms are not present.

Finally, Cg and Dg denote the same kind of residues: they appear respectively when the shifted
i-th or j-th gluons are off-shell. They are due to the vanishing of the shifted momentum in of this
particles: k2

i (z) = 0 or k2
j(z) = 0.
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3. Phenomenological analysis of 4-jet production

3.1 Single-parton scattering production of four jets

The collinear factorization formula for the calculation of the inclusive partonic 4-jet cross
section reads

σ
B
4− jets = ∑

i, j

∫ dx1

x1

dx2

x2
x1 fi(x1,µF)x2 f j(x2,µF)

× 1
2ŝ

4

∏
l=1

d3kl

(2π)32El
Θ4− jet (2π)4

δ

(
x1P1 + x2P2−

4

∑
l=1

kl

)
|M (i, j→ 4part.)|2 .

(3.1)

Here fi(x1,2,µF) are the collinear PDFs for the i− th parton, carrying x1,2 momentum fractions of
the proton and evaluated at the factorization scale µF ; the index l runs over the four partons in the
final state, P is the total initial state partonic momentum, associated to the center of mass energy
ŝ = P2 = (Pi +Pj)

2 = 2Pi ·Pj; the Θ function takes into account the kinematic cuts applied and M

is the partonic on-shell matrix element, which includes symmetrization effects due to the possible
identity of the final state particles.

The analogous formula to (3.1) for HEF is

σ
B
4− jets = ∑

i, j

∫ dx1

x1

dx2

x2
d2kT 1d2kT 2 Fi(x1,kT 1,µF)F j(x2,kT 2,µF)

× 1
2ŝ

4

∏
l=1

d3kl

(2π)32El
Θ4− jet (2π)4

δ

(
x1P1 + x2P2 +~kT 1 +~kT 2−

4

∑
l=1

kl

)
|M (i∗, j∗→ 4part.)|2 .

(3.2)

Here Fi(xk,kT k,µF) is a transverse momentum dependent (TMD) parton density for a given type
of parton. Similarly as in the collinear factorization case, xk is the longitudinal momentum fraction
and µF is a factorization scale. The new degree of freedom is introduced via the transverse kT k,
which is perpendicular to the collision axis. The formula is valid when the x’s are not too large and
not too small and, in order to construct a full set of TMD parton densities, we apply the Kimber-
Martin-Ryskin (KMR) prescription [9, 10], which, at the end of the day, amounts to applying the
Sudakov form factor onto the PDFs.

M (i∗, j∗→ 4part.) is the gauge invariant matrix element for 2→ 4 particle scattering with two
initial off-shell legs. We rely on the numerical Dyson-Schwinger recursion in the AVHLIB1 for its
computation. If a complete calculation of 4-jet production in kT factorization was still missing in
the literature, it was mainly because computing gauge-invariant amplitudes with off-shell legs is
definitely non trivial. Techniques to compute such amplitudes in gauge invariant ways are by now
analytically and numerically well established [6–8].

We use a running αs provided with the MSTW2008 PDF sets and set both the renormalization
and factorization scales equal to half the transverse energy, which is the sum of the final state
transverse momenta, µF = µR = ĤT

2 = 1
2 ∑

4
l=1 kl

T , working in the nF = 5 flavour scheme.

1available for download at https://bitbucket.org/hameren/avhlib
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3.2 Double-parton scattering production of four jets

The SPS contribution is expected to dominate for high momentum transfer because, as it is
intuitively clear, it is highly unlikely that two partons from one proton and two from the other one
are energetic enough for two very hard scatterings to take place, as the well-known behaviour of the
PDFs for large momentum fractions suggests. However, if the cuts on the transverse momenta of
the final state are lowered, a window opens to observe significant double parton scattering effects,
as often stated in the literature on the subject and recently analysed for 4-jet production in the
framework of collinear factorization [11]. Here we perform the same analysis in HEF, with the
goal to assess the differences in the predictions.

First of all, let us present the standard, phenomenologically motivated formula for the compu-
tation of differential DPS cross sections, tailored to a four-parton final state,

dσB
4− jet,DPS

dξ1dξ2
=

m
σe f f

∑
i1, j1,k1,l1;i2, j2,k2,l2

dσB(i1 j1→ k1l1)
dξ1

dσB(i2 j2→ k2l2)
dξ2

, (3.3)

where the σ(ab→ cd) cross sections are obtained by restricting formulas (3.1) and (3.2) to a single
channel and the symmetry factor m is 1/2 if the two hard scatterings are identical, in order to avoid
double counting, and is otherwise 1, whereas ξ1 and ξ2 denote generic kinematical variables for
the first and second scattering, respectively.

The effective cross section σe f f can be loosely interpreted as a measure of the transverse
correlation of the two partons inside the hadrons. In this paper we stick to the widely used value
σe f f = 15 mb.

We also have to use an ansatz for DPDFs; for collinear-factorization this is

D1,2(x1,x2,µ) = f1(x1,µ) f2(x2,µ)θ(1− x1− x2) , (3.4)

where D1,2(x1,x2,µ) is the DPDF and fi(xi,µ) are the ordinary PDFs. The subscripts 1 and 2
distinguish the two generic partons in the same proton. Of course this ansatz can be automatically
generalised to the case when parton transverse momenta are included by simply including the
dependence on the transverse momentum.

3.3 Comparison to the collinear approach and to ATLAS data with hard central kinematic
cuts

Our HEF calculation was first tested against the 8 TeV data recently reported by the ATLAS
collaboration [16]. The kinematic cuts are pT > 100 GeV for the leading jet and pT > 64 GeV for
the first three subleading jets; in addition |η |< 2.8 is the pseudorapidity cut and ∆R > 0.65 is the
constraint on the jet cone radius parameter.

We employ the running NLO αs coming with the MSTW2008 sets. For such cuts, not much
difference is expected between the two approaches and indeed we find none; DPS effects are irrel-
evant with this kinematics.

3.4 Comparison to CMS data with softer cuts

As discussed in Ref. [11], so far the only experimental analysis of four-jet production relevant
for the DPS studies was realized by the CMS collaboration [17]. The cuts used in this analysis are

6
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pT > 50 GeV for the first and second jets, pT > 20 GeV for the third and fourth jets, |η |< 4.7 and
the jet cone radius parameter ∆R > 0.5. In the rest of this section, we present our results for such
cuts.

As for the total cross section for the four jet production, the experimental and theoretical LO
results are:

CMS collaboration : σtot = 330±5(stat.)±45(syst.)nb

LO collinear factorization : σSPS = 697nb , σDPS = 125nb , σtot = 822nb

LO HEF kT -factorization : σSPS = 548nb , σDPS = 33nb , σtot = 581nb (3.5)

The LO results need refinements from NLO contributions, much more than it does in the case of the
ATLAS hard cuts, as we are of course not that deep into the perturbative region. For this reason, in
the following we will always perform comparisons only to data normalised to the total (SPS+DPS)
cross sections. We find that this is better than introducing fixed K-factors, whose phase-space
dependence is never really under control. What is immediately apparent in the HEF total cross
section is the dramatic damping of the DPS contribution with respect to the collinear case. This
damping effect is of kinematical nature. The point is that the emission of gluon radiation, which is
taken into account via the TMDs in our approach and via the real contribution in a collinear NLO
calculation, alters the exact momentum balance of the final state two-jet system, so that a lot of
events are not taken into account for the higher transverse momentum just above the cut. In Fig. 1
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Figure 1: Comparison of the LO collinear and HEF predictions to the CMS data for the 1st and 2nd leading
jets.

we compare the predictions in HEF to the CMS data for the 1st and 2nd leading jets transverse
momenta spectra. Here both the SPS and DPS contributions are normalized to the total cross
section, i.e. the sum of the SPS and DPS contributions. In all cases the renormalized transverse
momentum distributions agree quite well with the CMS data.

3.5 HEF predictions for a possible set of asymmetric cuts

Now we propose a set of asymmetric cuts. Specifically, we require pT > 35 GeV for the
leading jet, pT > 20 GeV for all the other jets and we stick to |η | < 4.7, ∆R > 0.65 for rapidity

7
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and jet size parameter. An experimental analysis with such cuts is not available at the moment. Of
course it would be desirable to have such an analysis in the future.

The theoretical total cross sections for these cuts for four-jet production are:

LO collinear factorization : σSPS = 1969nb , σDPS = 514nb

LO HEF kT -factorization : σSPS = 1506nb , σDPS = 297nb (3.6)

When comparing to (3.5), it is apparent that now the drop in the total cross section for DPS when
moving from LO collinear to HEF approach is considerably smaller, as argued.
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Figure 2: LO collinear and HEF predictions for the 1st and 2nd leading jets with the asymmetric cuts.

In Fig. 2 we show our predictions for the normalized transverse momentum distributions with
the new set of cuts.

4. Looking for new variables to enhance DPS

We proposed in [13] that the analysis of cross sections which are differential with respect to
three other variables might be interesting in view of the goal of clearly identifying DPS.

The first of such variables was found to be the maximum rapidity distance

∆Y≡ maxi, j∈{1,2,3,4}
i 6= j

|ηi−η j| . (4.1)

A second candidate is the azimuthal correlations between the jets which are most remote in rapidity

ϕ j j ≡ |ϕi−ϕ j| , for |ηi−η j|= ∆Y . (4.2)

Finally, we propose that the minimal sum of two azimuthal distances, defined as

∆ϕ
min
3 j ≡ mini, j,k∈{1,2,3,4}

i 6= j 6=k
(|ϕi−ϕ j|+ |ϕ j−ϕk|) , (4.3)

can be specially interesting. Lack of space prevents us from repeating here the analysis of [13], but
it is at least worth illustrating the key concept in Fig. 3, where it can be seen that, especially for 13
TeV data, the DPS contribution to the differential cross section grows up to 1/2 for high values of
∆ϕmin

3 j .
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Figure 3: Distribution in ∆ϕmin
3 j angle for the asymmetric cut for

√
s = 7 TeV (left) and

√
s = 13 TeV (right).

The SPS contribution is shown by the dotted line while the DPS contribution by the dashed line. The relative
contribution of DPS is shown in the extra lower panels.

5. Conclusions

We have compared the perturbative predictions for four-jet production at the LHC in leading-
order collinear and high-energy (kT -)factorization. We find that there is no significant difference
between the collinear and HEF approach for hard central cuts, but significant differences show up,
especially for DPS, when the cuts on the transverse momenta are lowered. Our approach is able
to describe existing CMS data on jet rapidity distributions and we have presented our predictions
for differential distributions with respect to other variables as well. We observed that HEF severely
tames DPS for symmetric cuts, due to gluon-emission effects encoded in the PDFs which alter
the transverse-momentum balance between final state partons. We have found that the damping is
sensibly reduces when cuts are not identical.

We find that, for sufficiently small cuts on the transverse momenta, DPS effects are enhanced
relative to the SPS contribution when rapidities of jets are large, for large rapidity distances between
the most remote jets, for small azimuthal angles between the two jets most remote in rapidity and,
finally, for large values of ∆ϕmin

3 j . In general, the relative effects of DPS in the kT -factorization ap-
proach are somewhat smaller than those found previously in the LO collinear approach. A complete
treatment of the subject of this proceeding is extensively given in [12, 13].
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