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QCD in d = 4−2ε dimensions and large number of flavors possesses a nontrivial infrared stable
critical point. At the critical point the theory is invariant under the conformal transformations. It
implies that the evolution kernel of leading-twist light-ray operators commutes with the generators
of conformal transformations. Taking into account that the evolution kernels in the MS-scheme
are not sensitive to the space-time dimensions one concludes that QCD evolution equations in
MS-schemes have a hidden symmetry. Namely, the evolution kernel commutes with the gener-
ators of the conformal algebra. The explicit form of the generators differs from their canonical
(classical) form and can be derived by studying conformal Ward identities. Invariance with re-
spect to the conformal transformations imposes nontrivial constraints on the form of evolution
kernels and allows one to restore the nonforward evolution kernels for the nonsinglet operators
from the known NNLO anomalous dimensions. We present here the two loop expressions for the
generators of conformal algebra.
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1. Introduction

The recent progress in the experimental particle physics due to advances in accelerator and
detector technologies has made possible the study of hard exclusive reactions – reactions with
identified particles in the final state. The theoretical description of such processes is based on the
QCD factorization theorems and Operator Product Expansion (OPE). The transition amplitude for
a particular scattering processes can be represented as a convolution of nonperturbative functions –
so-called generalized parton distributions (GPDs), or distribution amplitudes (DAs) with a coeffi-
cient functions that can be calculated in perturbation theory. Scale dependence of the GPDs (DAs)
is governed by the renormalization group equations (RGEs). For processes with nonzero momen-
tum transfer from initial to the final state one has to keep under control the mixing of operators with
a different number of total derivatives. The matrix of anomalous dimensions has a triangular form
with the diagonal entries equal to the anomalous dimensions that are known nowadays to NNLO
accuracy [1, 2]. The nondiagonal entries, however, require a dedicated calculation.

Despite continuous progress in the multiloop calculation technique the direct calculation of
the mixing coefficients in higher orders is quite challenging. However, it has been known for
some time [3] that conformal symmetry of QCD Lagrangian imposes certain restrictions on the
form of the mixing matrix. This allows one to resolve mixing at given order of perturbation theory
performing an additional calculation at one order less. This technique was used to compute the non-
forward evolution kernels for the twist-two operators in QCD [4, 5, 6, 7, 8, 9, 10]. with two-loop
accuracy.

A different approach to this problem was suggested in [11]. The idea is to take advantage of
the existence of the nontrivial Wilson-Fisher fixed point of QCD in d = 4− 2ε dimensions. It is
well known that at a (critical) point the Poincare symmetry of a theory is enhanced, as a rule, to
include the scale and conformal transformations (see Ref. [12] for a review). It is expected that in a
conformal theory the RG kernels will commute with the generators of the conformal group. How-
ever, due to quantum corrections the form of the generators differ from their canonical expression.
Finally, noticing that in the MS-like scheme the RG kernels (anomalous dimensions matrices) are
not sensitive to the space-time dimension one deduces that the RG kernels are essentially the same
in the physical four dimensional theory and d = 4−2ε theory at the critical point.

The utility of this approach was demonstrated on several examples in Refs. [11, 13]. Below we
discuss the details of the two–loop calculation of the generator of special conformal transformations
presented Ref. [14].

2. QCD in d = 4−2ε dimensions

It is well known that QCD in d = 4−2ε dimension possesses a nontrivial critical point for a
large number of quark flavors 1. Indeed, the β -function in the d-dimensional theory takes the form

β (a) = M
da
dM

= 2a
(
− ε− γg

)
, (2.1)

1This property was used to develop the 1/N f expansion for the RG functions in QCD [15, 16, 17].
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where a = αs/4π and

γg = β0 a+β1a2 +O(a3) . (2.2)

Taking into account that

β0 =
11
3

Nc−
2
3

N f , β1 =
2
3
[
17N2

c −5NcN f −3CFN f
]

(2.3)

one concludes that the β function vanishes (β (a∗) = 0) for

a∗(ε) =−
ε

β0
−
(

ε

β0

)2
β1

β0
+O(ε3) . (2.4)

The vanishing of the β functions implies the conformal symmetry of the theory [12]. In gauge
theories the situation is a more subtle – one can expect only that the correlation functions of local
gauge-invariant operators transform in a proper way under conformal transformations. Notice also
that for the quantities of interest the dependence on N f is always polynomial so that the requirement
for N f to be large can be relaxed.

Let {Oi, i = 1, . . . ,n} be a set of the local leading twist operators of a given (canonical) dimen-
sion. These operators mix under renormalization and the RG equation takes the matrix form((

M∂M +β (a)∂a
)
δik + γik(a)

)
Oi = 0 , (2.5)

where γik is the anomalous dimension matrix. The form of the matrix γik depends strongly on the
choice of the basis operators, Oi. The symmetry properties of the problem are not transparent in
this formulation. The symmetry transformations take the simplest form in the coordinate space.
Therefore it is preferable to switch to a different description of the operators where the symmetry
generators are realized in the simplest way. Such a description is given by the so-called light-ray
operators [18] which are the generating functions for the local ones. The twist–two nonsinglet
light-ray operator takes the form

[O](x;z1,z2) = ZO(x;z1,z2) = Zq̄(x+ z1n)/nq(x+ z2n) = ∑
m,k

zm
1 zk

2
m!k!

[
q̄(x)

←
D+

m/n
→

D+
kq(x)

]
, (2.6)

where D+ = nµDµ and the gauge link between the quark fields is tacitly assumed. The square
brackets stand for the renormalization in the MS scheme. The renormalization factor Z is now an
integral operator acting on the light-cone coordinates z1,z2

Z = 1+
∞

∑
k=0

ε
−kZk(a) , Zk(a) =

∞

∑
`=k

a`Z(`)
k . (2.7)

The RGE for the light-ray operator [O] takes the form(
M∂M +β (a)∂a +H(a)

)
[O](x;z1,z2) = 0 . (2.8)

The integral operator H is related to the renormalization factor (2.7) as follows

H(a) = 2γq(a)−M
d

dM
ZZ−1 = 2γq(a)+2

∞

∑
`=1

`a`Z(`)
1 = ∑

k≥1
akH(k) , (2.9)

2



P
o
S
(
Q
C
D
E
V
2
0
1
6
)
0
1
9

Towards the three loop evolution equation for GPDs A. N. Manashov

γq is the quark anomalous dimension. It can be shown that the evolution kernel can be written as
follows

H(a)[O](z1,z2) =
∫ 1

0
dα

∫ 1

0
dβ h(α,β ) [O](zα

12,z
β

21) , (2.10)

where zα
12 = z1ᾱ + z2α and ᾱ = 1−α . The perturbative series for the weight function h(α,β ) has

the form

h(α,β ) = ah(1)(α,β )+a2h(2)(α,β )+ . . . , (2.11)

where the fixed-order kernels h(k)(α,β ) in the MS scheme do not depend on ε by construction.
Thus all dependence of the kernel H at the critical point on the space-time dimension d comes only
via the critical coupling, a∗ = a∗(ε)

H(a∗) = a∗H(1)+a2
∗H(2)+ . . . . (2.12)

It follows from these considerations that the RGEs in four dimensional theory in the MS-like
scheme inherit all symmetries of the evolution equations in the conformal theory in non-integer
dimensions.

3. Symmetry generators

At the critical point the theory enjoys the conformal symmetry and the evolution kernel H(a∗)
commutes with the generators of the conformal transformations. Only three of all generators act
non-trivially on the twist-two light ray operator. These transformation belongs to the so-called
soft-collinear SL(2,R) subgroup of the conformal group. The canonical (the tree level) generators,
Sα = {S+,S0,S−}, are given by well known expressions

S(0)+ = z2
1∂z1 + z2

2∂z2 +2(z1 + z2) , S(0)0 = z1∂z1 + z2∂z2 +2, S(0)− =−∂z1−∂z2 . (3.1)

Beyond the leading order two of the generators, S0 and S+ are modified by quantum corrections,

S0 = S(0)0 +∆S0 , S+ = S(0)+ +∆S+, (3.2)

but still satisfy the SL(2) commutation relations

[S+,S−] = 2S0, [S0,S±] =±S± . (3.3)

The form of the operator S0 can be fixed from general considerations,

S0 = S(0)0 + γg(a∗)+
1
2
H(a∗) . (3.4)

The first of the commutation relations (3.3) allows one to determine the generator of special con-
formal transformations, S+, up to one unknown functions ∆+,

S+ = S(0)+ +(z1 + z2)

(
γg(a∗)+

1
2
H(a∗)

)
+(z1− z2)∆+(a∗) . (3.5)
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The operator ∆+ (conformal anomaly) commutes with translations, [S−,∆+] = 0, and with the
canonical generator S(0)0 . These properties imply that the operator ∆+ can be represented in the
form (2.10).

The second of the commutation relations (3.3), [S0,S+] = S+, gives rise to the following equa-
tion for the evolution kernel, [S+,H(a∗)] = 0, that results in a nontrivial relation between H and
∆+. Namely,

[S(0)+ ,H(a∗)] = [H(a∗),z1 + z2]

(
γg(a∗)+

1
2
H(a∗)

)
+[H(a∗),(z1− z2)∆+(a∗)] . (3.6)

Expanding Eq. (3.6) in a series in a∗ one gets

[S(0)+ ,H(1)] = 0 ,

[S(0)+ ,H(2)] = [H(1),z1 + z2]

(
γ
(1)
g +

1
2
H(1)

)
+[H(1),(z1− z2)∆

(1)
+ ] ,

[S(0)+ ,H(3)] = [γ
(2)
g H(1)+ γ

(1)
g H(2),z1 + z2]+

1
2
[H(2),z1 + z2]H(1)+

1
2
[H(1),z1 + z2]H(2)

+[H(2),(z1− z2)∆
(1)
+ ]+ [H(1),(z1− z2)∆

(2)
+ ] (3.7)

and so on. Since the kernel H(a∗) commutes with S(0)− and S(0)0 (it commutes with the full generators
S−,S0 as well) these equations demonstrate that the non-invariant part of the `-loop kernel (with
respect to the canonical conformal transformations) is completely fixed by the lower order kernels
H(k),∆

(k)
+ , k = 1, . . . , `−1. The explicit form of the operator ∆+ can be derived from analysis of the

conformal Ward Identity (CWI) [8, 10, 14].

4. Conformal generators at two loops

In order to fix the form of the generator S+ it is convenient to consider the correlator of the
two light-ray operators,

G (x;z,w) = 〈[O(n)](0,z) [O(n̄)](x,w)〉= N
∫

DΦe−SR(Φ)[O(n)](0,z) [O(n̄)](x,w) . (4.1)

It can be shown that this correlator satisfies the following equation [14]

i
2

n̄µ

(
〈δ µ

K [O
(n)](0,z) [O(n̄)](x,w)〉+ 〈[O(n)](0,z)δ

µ

K [O
(n̄)](x,w)]〉

)
=

=

[
(nn̄)S(z)+ −

1
2

x2(n̄∂x)

]
G (x;z,w) = 0, (4.2)

where z = {z1,z2},w = {w1,w2} and we assume that (x · n) = (x · n̄) = 0. This equation can be
considered as the defining relation for the generator S+. In order to find the explicit form of S+ one
can consider CWI for the correlator (4.1). It follows from invariance of the integral (4.1) under the
change of variables:

Φ 7→Φ+δ
µ

K Φ , δ
µ

K Φ =
(

2xµ(x∂ )− x2
∂µ +2∆Φxµ −2xν

Σµν

)
Φ(x) . (4.3)
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Here Σµν is the generator of spin rotations,

Σµνc = Σµν c̄ = 0 , Σµνq =
i
2

σµνq , ΣµνAα = gναAµ −gµαAν ,

∆Φ is the dimension of the corresponding field. It is convenient to choose [10]:

∆q =
3
2
− ε, ∆A = 1, ∆c = 0 , ∆c̄ = 2− ε . (4.4)

The CWI takes the form

〈δ [O(n)](0,z) [O(n̄)](x,w)〉+ 〈[O(n)](0,z)δ [O(n̄)](x,w)〉= 〈δSR [O
(n)](0,z) [O(n̄)](x,w)〉, (4.5)

where δ = n̄µδ
µ

K , and δSR is the variation of the QCD action (in Euclidean space)

δ
µ

K SR =
∫

ddx2xµ

(
N (x)− (d−2)∂ ρBρ(x)

)
. (4.6)

The operators N and Bρ are given by the following expressions

N (x) = 2ε L Y M+g f
R = 2ε

(
1
4

Z2
AF2 +

1
2ξ

(∂A)2
)
, Bρ(x) = Z2

c c̄Dρc− 1
ξ

Aρ(∂A) . (4.7)

Let us note that in distinction with the non-gauge theories the variation (4.6) does not vanish even
at d = 4. However, the non-vanishing term, ∂ ρBρ , being the BRST variation does not contribute
to the correlation functions of gauge invariant operators 2. The further analysis goes along the lines
of Ref. [20]. One reexpands the operator N over the set of the renormalized (finite) operators,

N =−β (a)
a

[
L Y M+g f ]− (γA + γg)ΩA− ∑

Φ6=A
γΦΩΦ +

γA

ξ
[(∂A)2]+ zc∂

µ
Ωµ + zb∂µ [B

µ ] . (4.8)

The r.h.s. of this equation contains EOM operators, ΩΦ = Φ(y)
(

δSR/δΦ(y)
)

, ∂ µΩµ = Ωc̄−Ωc,

the BRST variation, [Bµ ], and two renormalized operators
[
L Y M+g f

]
and [(∂A)2]. All of them

enter with the finite coefficients – γΦ – the field anomalous dimensions, zc(g,ξ ) and zb(g,ξ ). The
operator [Bµ ] and the ghost EOM do not contribute to the correlator (4.5). It can be shown that
that quark and gluon EOM terms together with the gauge fixing term give rise to the expected
modification of the scaling dimensions in the expression for the conformal generator. Thus all
nontrivial corrections to the generator S+ originate from the first term on the r.h.s of (4.8). Although
this term appears with the coefficient β (a)/a which vanishes at the critical point the correlator

〈
∫

ddyN (y)[O(n)](0,z) [O(n̄)](x,w)〉 (4.9)

contains additional UV divergencies. They arise from the integration regions where the arguments
of the renormalized operators close to each other: y∼ 0 or y∼ x. Thus the correlator (4.9) requires
additional renormalization that gives rise to a nonzero contribution to CWI from this term.

It can be shown that for the given choice of the vectors x,n, n̄ all corrections to S+ come only
from pair counterterms to the operators N (y)[O(n)](0,z)∼ δ (y)Z(ε)[O(n)](0,z). Technical details
are rather lengthy and can be found in Ref. [14]. Here we give only the final answer.

2It explains why the correlator 〈Oqq̄〉, is not convenient object for analysis in the case of gauge theories.
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One loop correction to the generator S+ takes a very simple form [8, 13]

∆
(1)
+ f (z1,z2) = 2CF

∫ 1

0
dα

∫ 1

0
du

ᾱ

α

[
f (zαu

12 ,z2)− f (z1,zαu
21 )
]
. (4.10)

At two loop the correction can be written [14] as follows

z12∆
(2)
+ = z12∆

(2)+
1
4
[
H(2),z1 + z2

]
, (4.11)

where the operator ∆(2) has the form

∆
(2) f (z1,z2) =

∫ 1

0
dα

∫
ᾱ

0
dβ

[
ω(α,β )+ω

P(α,β )P12

][
f (zα

12,z
β

21)− f (zβ

12,z
α
21)
]

+
∫ 1

0
du
∫ 1

0
dtκ(t)

[
f (zut

12,z2)− f (z1,zut
21)
]
. (4.12)

Here P12 f (z1,z2) = f (z2,z1) is the permutation operator and the kernels κ(t), ω(α,β ), ωP(α,β )

receive contributions of three different color structures

κ(t) =C2
F κP(t)+

CF

NC
κFA(t)+CFβ0κbF(t),

ω(α,β ) =C2
F ωP(α,β )+

CF

NC
ωFA(α,β ),

ω
P(α,β ) =

CF

NC
ω

P
FA(α,β ), (4.13)

The explicit expressions for the kernels χ , ω are

κbF(t) =−2
t̄
t

(
ln t̄ +

5
3

)
,

κFA(t) =
2t̄
t

{
(2+ t)

[
Li2(t̄)−Li2(t)

]
− (2− t)

( t
t̄

ln t + ln t̄
)
− π2

6
t− 4

3
− t

2

(
1− t

t̄

)}
,

κP(t) = 4t̄
[

Li2(t̄)−Li2(1)
]
+4
(

t2

t̄
− 2t̄

t

)[
Li2(t)−Li2(1)

]
−2t ln t ln t̄− t̄

t
(2− t) ln2 t̄

+
t2

t̄
ln2 t−2

(
1+

1
t

)
ln t̄−2

(
1+

1
t̄

)
ln t− 16

3
t̄
t
−1−5t . (4.14)

ωP(α,β ) =
4
α

[
Li2(ᾱ)−Li2(1)

]
+

1
α

ln2
ᾱ− (α−β ) ln2

(
α

ᾱ

)
−β ln2

α

+2α

(
π2

3
− 15

2

)
−2
(

α +β +
1
ᾱ

)
lnα +

(
β −2ᾱ

)(
1+

2
α

)
ln ᾱ .

ωFA(α,β ) = 2
[(

1
α
−α

)[
Li2

(
β

ᾱ

)
−Li2(β )−2Li2(α)− lnα ln ᾱ

]
+

α

τ

(
τ lnτ + τ̄ ln τ̄

)
− β̄ lnα− ᾱ

α
ln ᾱ

]
,

ω
P
FA(α,β ) = 2

[(
ᾱ− 1

ᾱ

)[
Li2

(
α

β̄

)
−Li2(α)− ln ᾱ ln β̄

]
+ατ̄ ln τ̄ +

β 2

β̄
ln ᾱ

]
, (4.15)

where τ = αβ/ᾱβ̄ .
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