

MORE RESULTS FROM THE OPERA EXPERIMENT OPERA

Yury Gornushkin (JINR, Russia) (gornushk@yandex.ru) on behalf of the OPERA Collaboration

The OPERA experiment was proposed in 1998 to prove oscillations of muon neutrinos to tau neutrinos (as explanation of the observed atmospheric neutrinos anomaly) through direct detection of the appearance of tau neutrinos in the CNGS muon neutrino beam as a result of the oscillations. The OPERA hybrid detector consisted of the target part made of 150000 leadnuclear emulsion bricks, where neutrino interaction occurred, and the electronic detectors: Target Tracker (TT), which provided the real time trigger for the events recording and the event vertex location at the brick level, and magnetic spectrometers to identify muons and to measure their momentum.

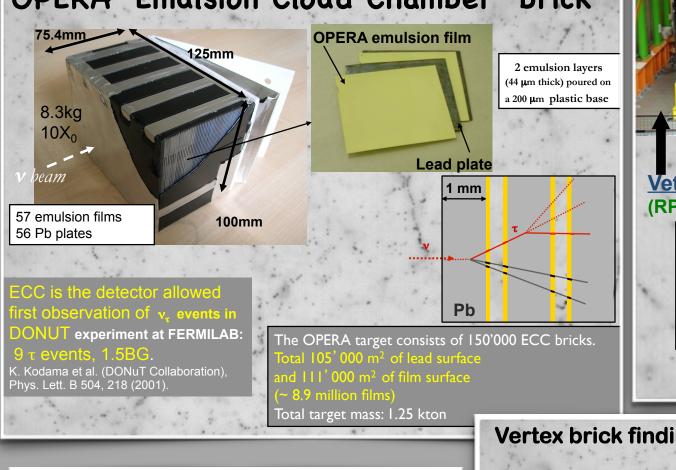
Year	Protons on target	SPS Eff.	Beam days	v interactions	20% less than the experiment proposa
2008	1.74x10 ¹⁹	61%	123	1931	value (22.5x10 ¹⁹ p.o.t.)
2009	3.53x10 ¹⁹	73%	155	4005	$ \varepsilon_{\text{trigger}} = 99\% $
2010	4.09x10 ¹⁹	80%	187	4515	•106 422 on time events recorded
2011	4.75x10 ¹⁹	79%	243	5131	•60% are external rock events •20% are spectrometer interactions
2012	3.86x10 ¹⁹	82%	257	3923	2070 are spectrometer interactions

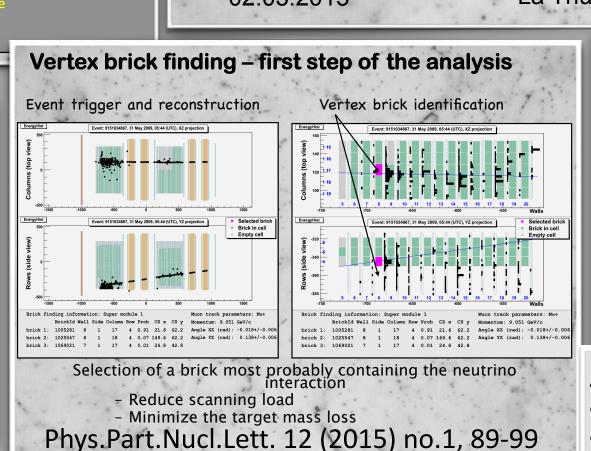
2012	CIOUNIO	0270	201	C > 20					
19505 recorded ν interactions in the OPERA target 83% are reconstructed in the target P distribution for 1 μ sample MC sys 10 % MC sys 10 %									sample
	vent ification	Perfo anal		# of De Searched		Events/10 ¹⁹ pc	τ → μ (a.u.)	+	
	0μ	1 st +2 nd	brick	1144	ŀ	500		<u>.</u> [7
1μ (Ρ _μ	< 15 GeV)	1 st +2 nd	brick	4264	i	300	· ·	+	
	All			5408	3	100			
						0	-40 -30 -20	-10	0 10

proving with 5.1 sigma appearance

of tau neutrinos, OPERA successfully

accomplished the mission, but several


analysis are still in progress and more


 $V_{\mu} \rightarrow V_{\tau}$ oscillation analysis:

results are coming soon.

OPERA "Emulsion Cloud Chamber" brick (44 µm thick) poured o 57 emulsion films 56 Pb plates

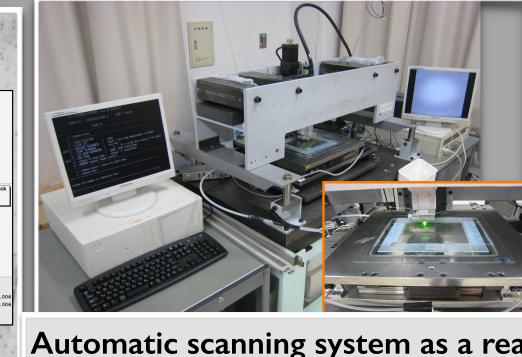
OPERA emulsion films as a detector and data storage media

Decay

channel

 $\tau \rightarrow 1h$

 $|\tau \rightarrow 3h|$


Charm

 0.017 ± 0.003

 0.17 ± 0.03

 0.004 ± 0.001

OPERA hybrid detector: 150000 bricks, 1.25 kT, 3100 m.w.e., 1 μ/m²/h Hybrid target structure. Veto plane Target and Target Tracker (6.7m)² **Instrumented dipole magnet High precision tracker** • Target: 77500 bricks, 29 walls • 6 4-fold layers of • 1.53 T drift tubes • 22 XY planes of RPC in Target tracker: 31 XY doublets of 256 both arms scintillator strips + WLS fibres + multi-Muon spectrometer (8×10 m²) anodes PMT for Brick selection La Thuile - 2015 02.03.2015 Calorimetry

Automatic scanning system as a reader

expected signal

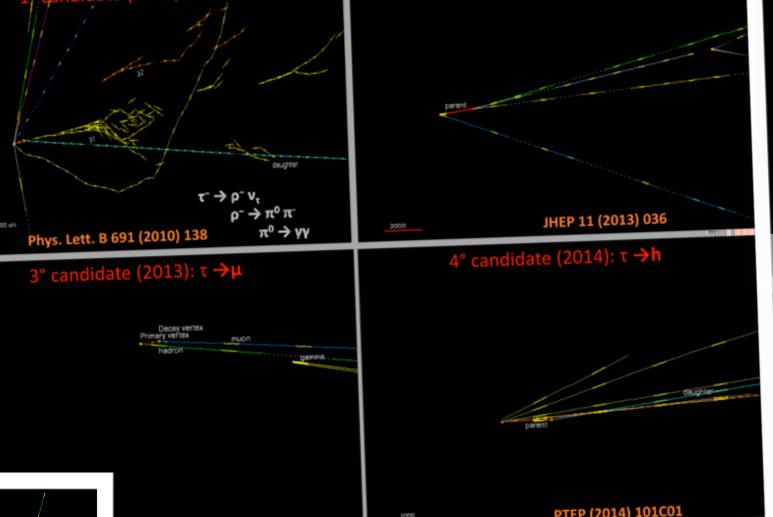
events

 $\Delta m^2 =$

 $2.44 \times 10^{-3} \text{ eV}^2$

 0.52 ± 0.10

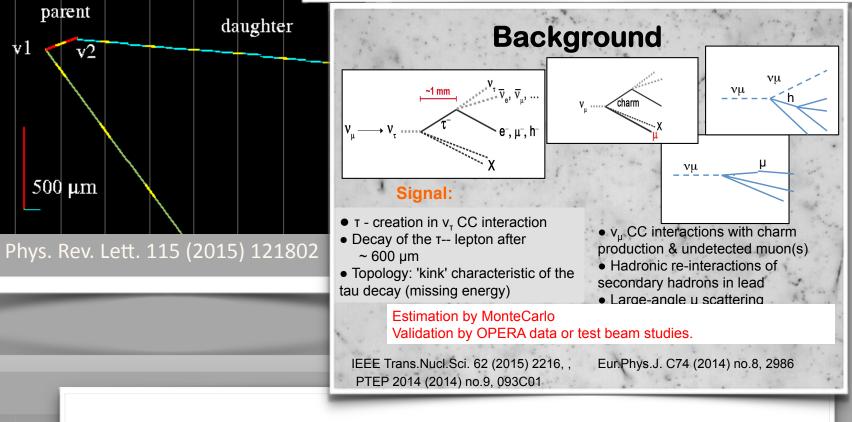
 0.73 ± 0.14


 0.61 ± 0.12

 0.78 ± 0.16

Observed

events


- Scanning speed/system: 75cm²/h • High speed CCD camera (3 kHz),
- Piezo-controlled objective lens
- FPGA Hard-coded algorit

50 GB

12.5x10 cv 556 GB

216 Mbps

Expected background

Large μ

scattering

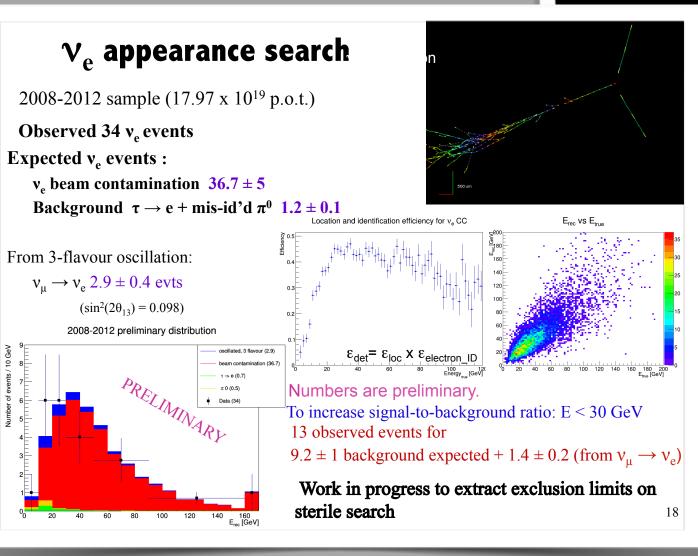
 0.0002 ± 0.0001

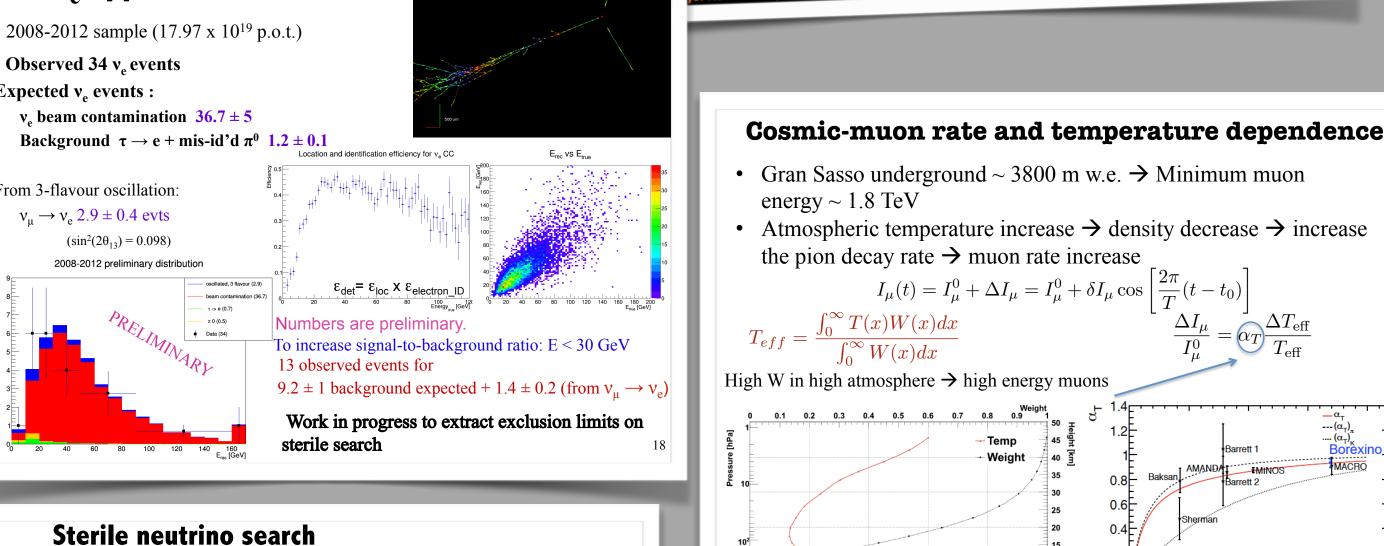
Total

 0.04 ± 0.01

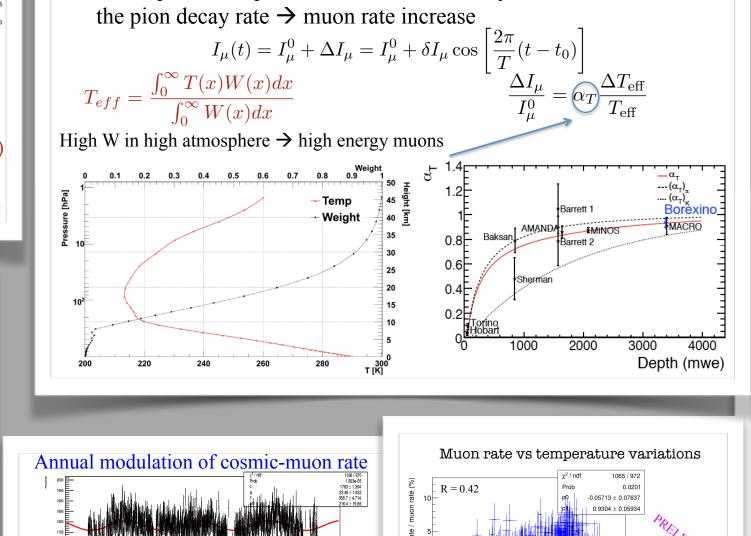
 0.17 ± 0.03

 0.004 ± 0.001

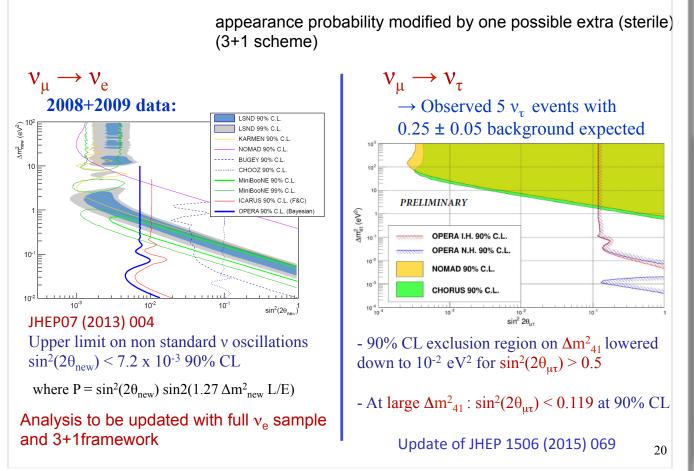

 0.03 ± 0.01


Had. Re-

interaction


 0.022 ± 0.006

 0.003 ± 0.001


 $=(1.32\pm0.11)\%$

 $t_0 = 216 \pm 16$

erature data by the European Center for Medium-range Weather Forecasts (ECMWF)

	ı − e	0.05±0.01	_	_	0.05±0.01	0.70±0.10	U			
ndence	Total	0.22±0.04	0.02±0.01	0.0002±0.0001	0.25±0.05	2.64±0.53	5			
on	p _{sum} : sca measured	alar sum of the momer in the emulsion film	that of all particles s $ 5 : \tau \to 1h $	Probability to be explained by background fluctuation $p = 1.1x10^{-7}$						
increase	0.3		$2: \tau \to 3h$ $3: \tau \to \mu$	No oscillation hypothesis excluded at 5.1 σ						
eff eff	0.1 3	2 5 4 1	40 p _{sum} (GeV/c	interval [2.0,		n a 90% confide ² (assuming ful				
$\begin{array}{c} -\alpha_{T} \\ \cdots (\alpha_{T})_{x} \\ \cdots (\alpha_{T})_{K} \\ \mathbf{Borexino} \end{array}$	•	_	≥5 candidates	s (2.9 S+B events probable than t			16			
$\frac{\alpha_{T/\pi}}{\text{Borexino}}$ $\frac{\text{MACRO}}{\text{MACRO}}$ $\frac{\text{MACRO}}{\text{Depth (mwe)}}$ $\frac{\sqrt{972}}{\sqrt{10201}}$ $\frac{\sqrt{372}}{\sqrt{10837}}$ $\frac{\Delta I_{\mu}}{I_{\mu}^{0}} = \alpha_{T} \frac{\Delta T_{\text{eff}}}{T_{\text{eff}}}$ $\alpha_{T} = 0.93 \pm 0.06$	• Use of and ser like even when the service of the	NC-like/CC-li	ke ratio vs. E _{tt} d in the scintillator p Data No oscillation Best fit fects coming tear detector), 1	only INC a fit u mixin but lanes 86 84 82 80 78 76 77 From the NC like 70 68 0 0	using NC-like/ong parameters a Δm_{23}^2 χ^2 in NC-like/CC-like ratio fi $\chi^2/n_{\rm d.o.f} = 0.98$	4σ rewe MC to os prob mini betw and o	which all PDG values eighting according scillation ability and mizing χ^2 ween MC			
		•		rage and the in	ternal OPERA	appearance re	sults			

