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The process of event-building—i.e gathering and associating data from multiple sensors or sub-
detectors that arises from a common physical event—is used in many fields, including high-energy
physics and gamma-ray astronomy. The problem of fault tolerance in event-building is a difficult
one, and one that becomes increasingly difficult with higher data throughput rates and increas-
ing numbers of sub-detectors. We draw on biological self-assembly models in the development
of a novel event-building paradigm that treats each packet of data from an individual sensor or
sub-detector as if it were a molecule in solution. Bonds (analogous to chemical bonds) are de-
fined between data packets using metadata-based discriminants. A database, which plays the role
of a beaker of solution, quasi-randomly and continually selects pairs of assemblies to test for
bonds, allowing single tiles and small assemblies to aggregate into larger assemblies. During
this process higher-quality associations supersede spurious ones. The database thereby becomes
fluid, dynamic, and self-annealing rather than static. We will describe lessons learned from early
prototypes of the fluid database as well as future directions.
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1. Introduction

In high-energy physics and astrophysics, event-building (the process of associating data from
multiple sensors or detector components in a coherent description of a physical event) is a key part
of online data processing. There is often a tension between needing to event-build for real-time
analysis, which provides immediate feedback, and the need to find and correct faults or gaps in
data (caused by data corruption or data transmission lags) before those faults become frozen in an
archive. We consider here a prototype fluid database designed to address these issues, implemented
for a test case based on the gamma-ray observatory VERITAS.

2. The fluid database concept

In a branch of nanoscale engineering known as self-assembly, regular structures (assemblies)
are produced via the random association of molecules in solution. Algorithmic self-assembly mod-
els these processes by a pool of abstract objects with simple bonding rules, coupled with repeated
random draws of pairs of assemblies from that pool [1]. This methodology can be used to study
mechanisms for achieving fault tolerance in the self-assembly process.

The fluid database draws to some degree on these concepts. It is a random access database
coupled to a continuously iterated process. Data packets are treated as if they were molecules in a
beaker of solution. At each iteration, pairs of data packets are drawn from a pool of data packets
and associated by means of specified bonding rules based on identifying metadata (e.g. event
numbers, timestamps). Fault tolerance is implemented through the existence of weak bonds, which
allow data packets to associate even when some metadata is corrupt. Higher quality bonds are
allowed to supersede and destroy existing lower-quality bonds. The assembly process ends when
the concentration of incomplete assemblies reaches an equilibrium state.

The fluid database schema described here is not an exact cognate to algorithmic self-assembly.
The goal of such self-assembly processes is typically the production of many copies of a single
machine from a few different types of building block. In this scenario it is irrelevant which copy of
a particular building block is chosen for a particular assembly. Only the block’s type and its place
in the assembly matters. For event-building, on the other hand, there is a unique choice of each
type of building block that corresponds to a valid event.

3. Fluid database implementation

The prototype fluid database structure remains similar to that described in [2]. An initial pro-
cess takes sets of data packets from the individual sensors, associates them based on a primary
metadatum, and then inserts the results into the fluid database as preliminary assemblies. We refer
to this process as pre-seeding. The full constituent bond strengths of these preliminary assemblies
are calculated before beginning the self-assembly process. It should be noted that the pre-seeded as-
semblies, while imperfect, can be used as-is for a real-time analysis of the data. The self-assembly
process, which anneals the pre-seeded assemblies into their final form, can proceed on a longer
timescale.

The self-assembly function of the fluid database is controlled by a master process, which mon-
itors the number of incomplete assemblies and selects a pair of assemblies to be bond-tested. These
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pairs are dispatched to a programmable number of slave processes, which perform the actual bond
calculations and update the database if it determines that the original assemblies should be mod-
ified. We obtained a roughly factor of 8 speed increase in the assembly process by replacing the
original random draw process[2] with a a semi-random selection method. Asssembly one is ran-
domy chosen, but is then paired with a likely interaction candidate by searching for the incomplete
assembly located nearest along a chosen metadata axis. By repeatedly cycling through the various
metadata axes for choosing interaction matches, the assembler is able to more quickly converge
on a solution, if one exists, for each incomplete assembly remaining after preseeding. We are still
studying how this semi-random method scales to a large number of metadata criteria and whether
the speed gain depends on using sortable metadata axes. To further improve convergence, assem-
blies that are complete (i.e. have a full complement of components from all expected sensors) and
whose bond strengths all exceed a user-defined threshold precipitate out, i.e. they are removed
from consideration by the assembler.

4. Performance tests

VERITAS consists of four imaging atmospheric Cherenkov telescopes (IACTs)[3]. The pack-
ets of data from each telescope are stamped with two quantities that permit data packets from a
common event to be associated: a centrally-assigned 32-bit event number and a GPS timestamp
from a clock local to the telescope[3]. Our bond criteria are defined based on these metadata. Un-
der ideal conditions, event-building could be done by simply matching event numbers. However,
the event number transmitted to a given telescope can experience bitwise corruption in transmis-
sion, and the GPS clock timestamps can experience variations due to thermal drift. These effects
are complicated by a small amount of actual data loss from individual telescopes. These fail-
ure modes and their interactions make VERITAS an excellent small-scale test case for the fluid
database paradigm.

Three roughly equally-sized samples of VERITAS raw data were used for the fluid database
tests. Since the time to convergence is expected to improve with greater parallelization of the as-
sembly process (which itself depends on the number of slave processes running on independent
cores), the assembly process was tested using a master and 2-6 slave processes (3-7 cores respec-
tively). The number of slaves could not be increased further due to hardware limitations of the
prototype system. Figure 1 summarizes the convergence process, as a function of number of cores,
for two of the three runs. We can see that in each case the assembly proceeds in a similar manner:
an initial, nearly linear phase where the semi-random algorithm finds almost entirely successful
interaction pairs, an inflection point when these “obvious” matches are used up, and the algorithm
begins to find unsuccessful interaction pairs, and then convergence to final equilibrium. When num-
ber of incomplete assemblies is at the percent level (samples 1 and 2) the convergence timescale is
relatively short (under an hour at maximum parallelization) and scales roughly linearly overall with
the number of cores used. The slope of the linear regime also scales noticeably with the number
of cores used. For the third sample, an extreme case where the corruption was at the 20% level,
convergence is slower (~ 1 day) and the slope of the linear regime is insensitive to the number
of cores used. The cause of this phenomenon has not yet been identified. In each case a residue
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of between 28 and 421 incomplete assemblies remains, which appears to arise not from metadata
corruption but hard data loss at one or more of the telescopes.
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Figure 1: Number of incomplete assemblies vs. time for two of the three sample runs, color-coded by the
total number of parallel processes used. The fraction of initial incomplete assemblies is less than 2% for the
run on the left, ~ 20% for that on the right.

5. Conclusions

We present here an in-development prototype of the fluid database, designed to recover links
between data from different sensors that would otherwise be lost due to data corruption. Initial
performance benchmarks for a simple test case (4 sensors) suggest that such recovery is possible
on a reasonable timescale as long as the fraction of data affected is at the 20% level or less. More
detailed investigation of these benchmarks and their implications for scaling to the generic n-sensor
case are still in progress.
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