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Introduction

The seminal application of QCD sum-rules to heavy-light hybrids was performed by Govaerts, Reinders, and Weyers [6] (hereafter referred to as GRW).
Therein, they considered four distinct currents covering J ∈ {0, 1} in an effort to compute a comprehensive collection of ground state hybrid masses. Their
correlator calculations took into account perturbation theory as well as 3d quark and 4d gluon condensate contributions, and precisely half of the channels
yielded proper mass predictions. However, for all heavy-light hybrids, the square of the ground state hybrid mass was uncomfortably close to the continuum
threshold (with a typical separation of roughly 100–200 MeV2), and it was noted that even a modest hadron width would result in the resonance essentially
merging with the continuum.

We extend the work of GRW by including both 5d mixed and 6d gluon condensate contributions in our correlator calculations. As noted in GRW, for heavy-
light hybrids, condensates involving light quarks are multiplied by a heavy quark mass allowing for the possibility of a numerically significant contribution to the
correlator and to the sum-rules. By this reasoning, the 5d mixed condensate could be a significant component of a QCD sum-rules application to the hybrid
systems under consideration. As for the 6d gluon condensate, recent sum-rules analyses of closed, heavy hybrids [3] have demonstrated that it is important
and can have a stabilizing effect on what were, in the pioneering work [5, 6, 4], unstable analyses.

Currents and Correlators

Following GRW, we define open hybrid interpolating currents
jµ =

gs
2
QΓρλaqGaµρ (1)

where gs is the strong coupling and λa are the Gell-Mann matrices. The field Q represents a heavy charm or bottom quark with mass MQ whereas q represents
a light up, down, or strange quark with mass mq. The Dirac matrix Γρ satisfies (2) and the tensor Gaµρ, the portion of (1) containing the gluonic degrees of
freedom, satisfies (3) where Ga

µρ is the gluon field strength and G̃a
µρ is its dual defined using the totally antisymmetric Levi-Civita symbol εµρνσ.

Γρ ∈ {γρ, γργ5}, (2) Gaµρ ∈ {Ga
µρ, G̃

a
µρ =

1

2
εµρνσG

a
νσ} (3)

For each of the four currents defined through (1)–(3), we consider a corresponding diagonal, two-point correlation function

Πµν(q) = i

∫
d4xeiq·x〈Ω|τjµ(x)j†ν(0)|Ω〉 =

qµqν
q2

Π(0)(q2) +

(
qµqν
q2
− gµν

)
Π(1)(q2). (4)

The tensor decomposition in (4) is such that Π(0) probes spin-0 states while Π(1) probes spin-1 states. Furthermore, each of Π(0) and Π(1) couples to a particular
parity value. In the case of closed flavor hybrids, they also couple to a particular C-parity value, but, for open hybrids, this is not the case. For convenience,
we will reference each of the Π(0) and Π(1) according to the JPC combination it would have were we investigating closed rather than open hybrids; however, to
stress that the C-value can not be taken literally, we will enclose it in brackets.

Γρ Gaµρ JP (C)

γρ Ga
µρ 0+(+), 1−(+)

γρ G̃a
µρ 0−(+), 1+(+)

γργ5 Ga
µρ 0−(−), 1+(−)

γργ5 G̃a
µρ 0+(−), 1−(−)

Table 1: The JP (C) combinations probed through different choices of Γρ and Gaµρ.

〈qq〉 = 〈qαi qαi 〉 (5)
〈αG2〉 = 〈αsGa

µνG
a
µν〉 (6)

〈gqσGq〉 = 〈gsqαi σ
µν
ij λ

a
αβG

a
µνq

β
j 〉 (7)

〈g3G3〉 = 〈g3sfabcGa
µνG

b
νρG

c
ρµ〉. (8)

We calculate the correlators (4) within the operator product expansion (OPE) in which perturbation theory is supplemented by a collection of non-
perturbative terms, each of which is the product of a perturbatively computed Wilson coefficient and a non-zero vacuum expectation value (VEV) or con-
densate. We include condensates up to and including those of dimension (d) six:

where the VEVs (5)–(8) are respectively referred to as the 3d quark condensate, the 4d gluon condensate, the 5d mixed condensate, and the 6d gluon
condensate.

The Wilson coefficients (including perturbation theory) are computed to leading-order (LO) in gs using coordinate-space, fixed-point gauge techniques
(see [1], for example). Light quark masses are included in perturbation theory through a light quark mass expansion, but have been set to zero in all other
OPE terms. The contributing Feynman diagrams are depicted in Figure 1 (all Feynman diagrams are drawn using JaxoDraw [2]). where we follow as closely
as possible the labeling scheme of [7]. (Note that there is no Diagram IV in Figure 1 because, in [7], Diagram IV corresponds to an OPE contribution stemming
from 6d quark condensates.) Divergent integrals are handled using dimensional regularization in D = 4 + 2ε spacetime dimensions at a renormalization scale
µ2, and we use the program TARCER [8] to reduce complicated, two-loop integrals to a small collection of simple basic integrals, all of which are well-known
for the diagrams under consideration.

Sum Rule Methodology

Based on their dimension and analytic properties when viewed as a function of Q2 = −q2, the functions Π(0) and Π(1) from (4) both satisfy a dispersion relation

Π(Q2) =
Q8

π

∫ ∞
M2
Q

ImΠ(t)

t4(t + Q2)
dt + · · · , Q2 > 0 (9)

where the · · · represents subtractions constants, collectively a third degree polynomial in Q2. The quantity Π on the left-hand side of (9) is to be identified with
the OPE result, an expression written in terms of the parameters of QCD, namely the strong coupling, the quark masses, and the condensates. On the other
hand, the quantity ImΠ on the right-hand side of (9), known as the hadronic spectral function, contains the peaks which are identified with strong resonances;
as such, it depends on hadronic paramaters such as masses, widths, and resonance coupling strengths. Therefore, the dispersion relation (9) serves to relate
hadronic parameters to QCD parameters, and, in principle, could be used to extract properties of hadrons directly from QCD.

We introduce the Borel transform

B̂ = lim
N,Q2→∞
τ=N/Q2

(−Q2)N

Γ(N)

(
d

dQ2

)N
(10)

where the transform variable τ is called the Borel scale, and use it to define the kth-order Laplace sum-rule (LSR)

Rk(τ ) =
1

τ
B̂
{

(−Q2)kΠ(Q2)
}

=

∫ ∞
M2
Q

tke−tτ
1

π
ImΠ(t)dt, k ≥ 0, (11)

considering the dispersion relation (9).
In a typical QCD sum-rules analysis, the hadronic spectral function is parametrized in terms of a small number of hadronic quantities, predictions for which

are then extracted using some fitting procedure. In what follows, we employ the “single narrow resonance plus continuum” model
1

π
ImΠ(t) = f 2Hm

8
Hδ(t−m2

H) + θ(t− s0)
1

π
ImΠOPE(t) (12)

where mH is the ground state resonance mass, fH is its coupling strength, θ is a Heaviside step function, s0 is the continuum threshold parameter, and ImΠOPE

is the imaginary part of the expression for Π. Substituting (12) into (11) and defining subtracted LSRs by

Rk(τ, s0) = Rk(τ )−
∫ ∞
s0

tke−tτ
1

π
ImΠOPE(t)dt, (13)

we find the result
Rk(τ, s0) = f 2Hm

8+2k
H e−m

2
Hτ ⇒ R1(τ, s0)

R0(τ, s0)
= m2

H (14)

giving us the central equation of our analysis methodology.
To develop an OPE expression for Rk(τ, s0), we exploit a relationship between the Borel transform and the inverse Laplace transform L̂−1 [9]:

1

τ
B̂
{
f (Q2)

}
= L̂−1

{
f (Q2)

}
=

1

2πi

∫ c+i∞

c−i∞
f (Q2)eQ

2τdQ2 (15)

where c is chosen such that f (Q2) is analytic to the right of the integration contour in the complex Q2-plane. Then, applying definitions (11) and (14) to the
correlator and making use of the identity (15), it is straightforward to show that

R0(τ, s0) = M 2
Q

∫ s0
M2
Q

1

e−xM
2
Qτ

1

π
ImΠ(xM 2

Q)dx +
e−M

2
QτM 3

Qαs〈gqσGq〉
108π

[
a log

(
M 2

Q

µ2

)
+ b

]
, {a, b} constant. (16)

(a) Diagram I (LO per-
turbation theory)

(b) Diagram II
(dimension-four)

(c) Diagram III
(dimension-four)

(d) Diagram V
(dimension-six)

(e) Diagram VI
(dimension-six)

(f) Diagram VI
(dimension-six)

(g) Diagram VII
(dimension-five)

(h) Diagram VIII
(dimension-five)

(i) Diagram IX
(dimension-five)

(j) Diagram X
(dimension-five)

(k) Diagram XI
(dimension-five)

(l) Diagram XI
(dimension-five)

(m) Diagram XII
(dimension-five)

(n) Diagram XIII
(dimension-five)

(o) Diagram XIV
(dimension-five)

Figure 1: The Feynman diagrams contributing to the correlator. Single solid lines correspond to light quark propagators whereas double solid lines correspond to heavy quark propagators.

To extract stable mass predictions from the QCD sum-rule, we require a suitable range of values for our Borel scale (τ ) within which our analysis can be
considered reliable. Within this range, we perform a minimization procedure to obtain an optimized value of the continuum onset (s0) associated with our
resulting mass prediction. We determine the bounds of our Borel scale by examining two conditions: the convergence of the OPE, and the contribution of
the pole mass to the overall mass prediction. We mirror our previous work done in charmonium and bottomonium systems [3]; to enforce OPE convergence
and obtain an upper-bound on our Borel window (τmax), we require that contributions to the dimension-four condensate be less than one-third that of the
perturbative contribution, and the dimension-six gluon condensate contribute less than one-third of the dimension-four condensate contributions.
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Figure 2: Illustrating the stability of mass predictions for 1−(−) charm-light channel. The sum
rule is plotted in the τ window for the optimized value of s0 shown in black; the predictions for
surrounding values of the continuum parameter have been included to demonstrate the insen-
sitivity of the mass prediction to shifts in s0. The stability of the mass in the predicted τ window
demonstrates the viability of the prediction
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Figure 3: Illustrating the stability of mass predictions for 1−(−) bottom-light channel. The sum
rule is plotted in the τ window for the optimized value of s0 shown in black; the predictions for
surrounding values of the continuum parameter have been included to demonstrate the insen-
sitivity of the mass prediction to shifts in s0. The stability of the mass in the predicted τ window
demonstrates the viability of the prediction

Figure 4: Summary of mass predictions with uncertainties for charm and bottom hybrid sys-
tems for the stabilizing JP (C) channels

Results

For each heavy-light hybrid combination under consideration, we performed a
LSRs analysis of all eight distinct JP (C) combinations defined according to Ta-
ble 1. As can be inferred from Figure 4 , half of the analyses stabilized; the
other half did not. In particular, the JP (C) ∈ {0+(+), 1−(−), 1+(−)} analyses were
stable while the JP (C) ∈ {0+(−), 1+(+), 1−(+)} were unstable. For charm-light and
charm-strange hybrids, the 0−(−) sector stabilized whereas the the 0−(+) sector
did not. For bottom-light and bottom-strange hybrids, this situation was re-
versed: the 0−(+) sector stabilized while the the 0−(−) sector did not. Note that,
for all four heavy-light quark combinations considered, we did arrive at a unique
mass prediction for each JP . Within computational uncertainty, the mass spec-
tra of the heavy-light hybrid systems are predicted to be degenerate with their
heavy-strange counterparts. This is unsurprising given how numerically in-
significant the light quark masses are to the hybrid LSRs under consideration,
as (again) corrections to perturbation theory are largely driven by the 4d gluon
condensate. In addition, the two spin-1 mass predictions are degenerate in
the charm systems and are nearly so in the bottom systems. Furthermore,
for charm hybrids, there is a large splitting between the spin-1 mass and the
(mean) spin-0 mass with the spin-0 states coming in significantly heavier than
the spin-1 states. For bottom hybrids, on the other hand, the relative splittings
between states is much less pronounced than for charm hybrids.

Conclusions

In conclusion, we have presented predictions for the masses of charm-light, charm-strange, bottom-light, and bottom-strange hybrids for JP ∈ {0±, 1±}
utilizing QCD sum-rules and improving upon the calculations of [5] by updating the non-perturbative parameters in the calculation, and including higher
dimensional condensates in the OPE that have been shown important to sum-rule stability. We find a degeneracy in the heavy-light and heavy-strange
states, and stabilization in the previously unstable 0−(−) and 1−(+) channels driven by the addition of the higher dimensional mixed and 6d gluon condensate
contributions. As a consequence of these higher dimensional contributions, the 1+(+) channel is destabilized from the original analysis of [5].
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