Fragmentation contributions to hadroproduction of prompt J/ψ , χ_{cJ} , and $\psi(2S)$ states

Hee Sok Chung (CERN)

In collaboration with Geoffrey T. Bodwin, U-Rae Kim, Jungil Lee, Yan-Qing Ma, Kuang-Ta Chao GTB, HSC, URK, JL, PRL113, 022001 (2014);PRD92, 074042 (2015);GTB, HSC, URK, JL, YQM, KTC, PRD93, 034041 (2016)

Inclusive J/ψ production in NRQCD

NRQCD factorization conjecture for production of His given by Bodwin, Braaten, and Lepage, PRD51, 1125 (1995)

The sum is usually truncated at relative order v^4 :

- ${}^3S_1^{[8]}$, ${}^3P_I^{[8]}$, ${}^1S_0^{[8]}$, ${}^3S_1^{[1]}$ channels for J/ψ
- It is not known how to calculate nonperturbative color-octet (CO) LDMEs
- CO LDMEs are extracted from fits to measured cross sections

Prompt J/ψ polarization in NRQCD

NRQCD at LO in α_s predicts transverse polarization at large

→ Disagrees with measurement

NLO corrections are large in the ${}^3S_1^{[8]}$ and ${}^3P_J^{[8]}$ channels

→ NLO predictions vary

Leading-power fragmentation contributions

- The leading power (LP) in p_T ($1/p_T^4$) is given by single-parton fragmentation Collins and Soper, NPB194, 445 (1982)
 Nayak, Qiu, and Sterman, PRD72, 114012 (2005)
- Our strategy is to use LP fragmentation to supplement the fixed-order NLO calculation.
- We calculate

LP fragmentation LP fragmentation resummed leading logs to NLO accuracy

$$\frac{d\sigma^{\mathrm{LP+NLO}}}{dp_T} = \underbrace{\frac{d\sigma^{\mathrm{LP}}}{dp_T} - \frac{d\sigma^{\mathrm{LP}}_{\mathrm{NLO}}}{dp_T} + \frac{d\sigma_{\mathrm{NLO}}}{dp_T}}_{\text{fixed-order}}$$
 Additional fragmentation calculation to

We take $p_T > 3 imes m_{
m quarkonium}$ in order to suppress possible non-factorizing contributions

contributions

LP+NLO/NLO

- The additional fragmentation contributions have important effects on the shapes in the ${}^3P_I^{[8]}$ channel
- Large corrections to the shape of the ${}^3P_I^{[8]}$ channel because the LO and NLO contributions cancel at about $p_T \approx 7.5 \; \mathrm{GeV}$

$\psi(2S)$ hadroproduction

 $\psi(2S)$ polarization CMS, PLB727, 381 (2013) LHC ($\sqrt{s} = 7 \text{ TeV}$) LP+NLO, LHC |y| < 1.2CMS data, |y| < 0.6CMS data, 0.6 < |y| < 1.2CMS data, 1.2 < |y| < 1.5 $p_T \text{ (GeV)}$

Using LDMEs from fit to CMS and CDF cross section data, we predict that the $\psi(2S)$ is slightly transverse at the LHC

χ_{cJ} hadroproduction

We assume EI transition in $\chi_{cJ} o J/\psi + \gamma$

Using LDMEs from fit to ATLAS cross section data, we predict that the polarization of J/ψ from χ_{cJ} is slightly transverse at the LHC

J/ψ hadroproduction

 λ_{θ}

Direct J/ψ cross section

 Including feeddown contributions, we obtain good fits to J/ψ cross section

- The fit constrains the $^3P_J^{[8]}$ and $^3S_1^{[8]}$ to cancel . This is in reasonably good agreement with CMS data, • ${}^1S_0^{[8]}$ dominates the direct cross section

Prompt J/ψ polarization at the Tevatron and the LHC

- Direct J/ψ and J/ψ from feeddown is slightly transverse
- •PROMPT J/ψ HAS SMALL POLARIZATION
- but disagrees with CDF Run II data