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1. Introduction

Lattice QCD is a computational technique whereby low-energy hadronic interactions are di-

rectly simulated on supercomputers. It is the only known technique for studying low-energy QCD

that is systematically improvable, meaning that all of the systematic error sources can be controlled

and reduced with sufficient computational effort. With recent theoretical and algorithmic advances,

and continued developments in computing power, lattice calculations have now reached a level of

precision with which they can make a significant impact on the search for Beyond the Standard

Model (BSM) physics. Of particular importance is the development of techniques for calculating

matrix elements of multi-particle states, for which there are power-law finite-volume effects that

must be eliminated. In this work we discuss the application of these techniques to several kaonic

matrix elements involving multi-particle states that are known to be sensitive to BSM physics.

2. K → ππ and ε ′/ε

The preponderance of matter over antimatter in the observable Universe can be explained by

baryogenesis, a requirement for which is the breaking of the CP symmetry. While CP-violation

(CPV) is present in the Standard Model, its magnitude appears to be too small to account for the

size of the matter/antimatter asymmetry, suggesting new physics awaits discovery. Direct CPV

in K-meson decays is highly suppressed in the Standard Model and therefore offers a particularly

sensitive probe for BSM sources of CPV.

Direct CPV in kaon decays was discovered in the late 1990s at Cern (NA31/NA48) and Fer-

milab (KTeV) with the following result:

Re(ε ′/ε)≈ 1
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= 16.6(2.3)×10−4 ,

where ε ′ and ε are the measures of direct and indirect CPV, respectively, and ηi j = A(KL →
πiπ j)/A(KS → πiπ j). However, until recently there has not been a reliable Standard Model pre-

diction for this quantity that can be compared to experiment because the process receives large

contributions from low-energy QCD interactions that are not amenable to perturbative calcula-

tions. The RBC & UKQCD collaborations have now performed [1] the first complete, realistic

calculation of ε ′ in the Standard Model, which we summarize below.

ε ′ can be computed on the lattice via

ε ′ =
iei(δ2−δ0)

√
2

Re(A2)

Re(A0)

(

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

)

. (2.1)

where A2 and A0 are K → ππ amplitudes where the final two-pion state has isospin 2 (∆I = 3/2)

and 0 (∆I = 1/2), respectively. The quantities δI are the corresponding ππ scattering phase shifts.

At low energies the K → ππ amplitudes are described very precisely by first-order ∆S = 1

weak effective theory:

AI = F
GF√

2
V ∗

usVud [zi(µ)+ τyi(µ)]Zi j(µ)〈(ππ)I|Q j(µ)|K〉 , (2.2)

where F is the Lellouch-Lüscher factor [2] that represents the finite-volume correction to the de-

cay amplitude, z and y are perturbative c-number Wilson coefficients, τ = −V ∗
tsVtd/VudV ∗

us, Vi j are

CKM matrix elements, and Qi are a set of dimension-six four-quark operators. Zi j is the renor-

malization matrix relating the bare lattice operators to MS operators normalized at the scale µ ,

thereby matching the scheme used in the calculation of the Wilson coefficients. These are com-

puted without resorting to the use of perturbative QCD at the hadronic scale by using an interme-

diate ‘regularization-invariant momentum scheme’ with symmetric kinematics (RI-SMOM) [3, 4]
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with which we can non-perturbatively run to a high energy scale where we can legitimately match

to MS using continuum perturbation theory.

The calculation of A0 is particularly difficult due to the presence of so-called disconnected

diagrams where the two-pion state decays into the vacuum and is recreated at a later time – such

diagrams are typically very noisy. In order to obtain good statistical resolution we use so-called

‘all-to-all’ propagators [5], whereby an approximation to the quark propagator from any site to any

other is obtained by exactly computing a subset of low eigenmodes and ‘patching up’ the high-

mode contribution using a stochastic technique. This allows us to tune the size and shape of the

two-pion source to minimize the overlap of our operator with the vacuum, as well as to maximally

translate the operators for optimal statistics.

A state is created on the lattice by the action on the vacuum of an operator with the desired

quantum numbers. In practise this generates a linear combination of all allowed states with those

quantum numbers. On a Euclidean lattice the more energetic states decay away exponentially

in time, hence K → ππ matrix elements involving the ground-states can be extracted simply by

sufficiently separating the four-quark operator from the kaon and ππ operators in lattice time.

Unfortunately the ground-state of the I = 2 ππ system comprises two pions at rest, and in the

I = 0 channel the same applies after the vacuum contribution is subtracted. This state has energy

2×mπ ∼ 260 MeV, much smaller than the kaon mass of ∼500 MeV. The dominant contribution to

the signal is therefore an unphysical matrix element that does not conserve energy. We avoid this

difficulty without resorting to multi-exponential fits to the time dependence by using antiperiodic

spatial boundary conditions on the down quark propagator for A2 and G-parity spatial boundary

conditions for A0 [6, 7, 8, 9]: Both have the effect of imposing antiperiodic boundary conditions on

the pions, thus increasing their ground-state momentum from 0 to π/L, where L is the lattice box

size. By appropriately tuning L we can therefore match the kaon and ππ energies.

2.1 Results and outlook

We have computed A2 [10] on our 483 × 96 and 643 × 128 2+1 flavor Möbius domain wall

fermion (DWF) ensembles with the Iwasaki gauge action, which have large, 5.4 fm physical vol-

umes ensuring small finite-volume errors, and lattice spacings of a−1 = 1.73 GeV and 2.36 GeV,

respectively, allowing us to take the continuum limit. The final results for Re(A2) and Im(A2) have

3% statistical errors and 10% and 12% total errors, respectively, which are dominated by the errors

due to the truncation of the perturbative series used to compute the Wilson coefficients and in the

perturbative matching of our RI-SMOM renormalized lattice operators to MS.

The calculation of A0 [1] has thus far been performed only with a single, somewhat coarse

lattice spacing of a−1 = 1.38 GeV but again with a large physical volume of 4.5 fm. We utilize a

323 × 64 volume with 2+1 flavor Möbius DWF and the Iwasaki+DSDR gauge action. We obtain

21% and 65% statistical errors on Re(A0) and Im(A0), respectively; the latter being enhanced by a

50% numerical cancellation of the dominant Q4 and Q6 contributions. The systematic error is again

dominated by the 15% error arising from the truncation of the perturbative series in computing the

Wilson coefficients and MS matching factors, here exacerbated by the somewhat low 1.53 GeV

renormalization scale demanded by the coarse lattice spacing.

Combining the lattice values of Im(A2) and Im(A0) and the ππ-scattering phase shifts com-

puted alongside, with the experimental values for Re(A2) and Re(A0) (While our lattice values

agree with experiment to within statistics, the latter are more precisely determined and are not

expected to be significantly impacted by BSM physics.) we obtain the following result

Re

(

ε ′

ε

)

= 1.38(5.15)(4.59)×10−4 ,
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where the errors are statistical and systematic, respectively. Our result has roughly 3× the exper-

imental error and agrees with experiment to 2.1σ . However there is a hint of a tension that has

provoked much interest both within and outside the lattice community, providing strong motivation

for continued study.

These calculations also allow us to examine a long-standing puzzle, namely the origin of the

∆I = 1/2 rule – a factor of 22.5 enhancement of Re(A0) over Re(A2). While a factor of 2 is obtained

through the running of the Wilson coefficients to the charm scale, it remained an open question as

to whether the remaining factor of 10 originates from new physics or due to non-perturbative QCD

effects. Combining our lattice values we obtain

Re(A0)

Re(A2)
= 31.1(11.2) ,

which, while having large errors, is consistent with the experimental value suggesting non-perturbative

QCD gives rise to the enhancement. We can trace the origin of this large ratio to a strong, highly

quark-mass dependent, 70%-level numerical cancellation between the two dominant contractions

in the I = 2 channel [10] that serves to heavily suppress Re(A2).
Our main priority for the near future is to increase statistics on the A0 calculation, and to this

end we have started a large-scale measurement programme with the target of a 4× increase in the

number of measurements within the year. We have also started work on reducing the perturbation

theory truncation systematic by raising the renormalization scale from 1.53 GeV to 2.29 GeV using

the step-scaling procedure; preliminary results [11] suggest a factor of 2 reduction in the systematic

error can be achieved. On a longer timescale we intend to generate a second lattice spacing in order

to take the continuum limit of A0. We also aim to investigate the effects of electromagnetism and

isospin-breaking effects as well as to treat the charm quark non-perturbatively.

3. KL −KS mass difference

Neglecting small CPV effects, the mixing of neutral kaons induced by second-order weak

interactions gives rise to a mass difference between the CP-eigenstates K1 ∼ KL and K2 ∼ KS:

∆MK = 2∑
n

〈K̄0|H∆S=1
W |n〉〈n|H∆S=1

W |K0〉
MK −En

= 3.483(6)×10−12 MeV , (3.1)

This quantity is extremely small because it arises due to flavour-changing neutral currents (FCNC)

and is therefore highly suppressed in the Standard Model by the GIM mechanism. This makes is

an attractive quantity to examine for hints of BSM FCNC.

∆MK can be computed using using the ∆S = 2 weak effective theory, with the charm quark is

integrated out perturbatively. For this quantity perturbation theory is poorly convergent at the charm

scale, giving rise to a 36% systematic error on the phenomenological result. These calculations also

neglect non-perturbative long-distance effects arising when the two weak Hamiltonian operators are

separated by distances ∼1/ΛQCD.

We can use lattice techniques to evaluate the matrix element in Eq. 3.1 directly. This contains

two insertions of the ∆S = 1 weak effective Hamiltonian, between which propagate all intermediate

states comprising light and charm quarks. In order to avoid using perturbation theory at the charm

scale it is also necessary to directly include a charm quark in the lattice calculation.

The matrix element of the two weak effective Hamiltonian operators between K and K̄ states

shown in Figure 1 evaluates to the following:
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Figure 1: Layout of the ∆MK calculation showing the source and sink kaon operators and the two

weak Hamiltonian insertions. The integration region in which we vary the temporal locations of

the weak Hamiltonian operators is indicated by the gray box.

A = N2
Ke−MK(ti−t f )∑

n

〈K̄0|H∆S=1
W |n〉〈n|H∆S=1

W |K0〉
MK −En

(

−T − 1

MK −En

+
e(MK−En)T

MK −En

)

(3.2)

where NK is the amplitude of the kaon source operator acting on the vacuum. The desired quantity

can be extracted by fitting the term linear in integration interval T .

The key challenges of this calculation are as follows:

• For physical kinematics, two- and three-pion intermediate states propagate between the two

operator insertions, and, as with the K → ππ calculation, these require Lellouch-Lüscher

corrections for finite-volume errors.

• For intermediate states of energy less than the kaon mass the final term in Eq 3.2 gives rise

to an unphysical exponentially growing background that must be explicitly subtracted.

• Large statistics are required again due to the presence of disconnected diagrams.

• A valence charm quark is required to avoid the use of perturbation theory and also to enable

the GIM mechanism to remove a divergence occuring when the operators approach each

other. This requires a fine lattice spacing in order to minimize discretization errors.

3.1 Results and outlook

We have computed ∆MK on a 243 ×64 Shamir DWF ensemble with the Iwasaki gauge action

and a lattice spacing of a−1 = 1.73 GeV [12]. In order to avoid having to correct multi-particle

intermediate states for the finite-volume, we used unphysically heavy, 330 MeV pions such that

only the single-pion intermediate state is lighter than the kaon. We also used an unphysically light

charm quark mass of 949 MeV so as to avoid large discretization errors. The calculation was

performed with very high statistics – 800 configurations – and the matrix element was maximally

translated across the lattice for optimal use of each configuration.

We obtain the following result:

∆MK = 3.19(41)(96)×10−12 MeV (3.3)

where the parentheses give the statistical error and the discretization systematic, respectively. This

result is consistent with the experimental value despite the unphysical masses. An interesting

observation is that the disconnected diagrams have a large contribution, which is in contradiction

with the “OZI rule”, which states that disconnected diagrams where the initial and final states are

connected only by internal gluon lines are suppressed because the moderate-energy gluons required

to carry the energy have reduced coupling due to the running of the coupling constant.

The dominant error on our result for unphysical kinematics arises due to the proximity of the

charm quark mass to the bound associated with the inverse lattice spacing, which gives rise to an

4
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estimated 30% discretization error. In the future we aim to use a finer lattice for this calculation, as

well as to move to physical pion masses.

4. Rare kaon decays

Lattice simulations can be used to study additional FCNC processes in the Standard Model.

Among these, of particular interest are the rare kaon decays K+ → π+l+l− and Ks → π0l+l−.

These amplitudes are dominated by long-distance contributions and therefore cannot be reliably

computed using perturbation theory. On the lattice we compute the QCD part of the diagram,

K → πγ∗, and use a moving pion to study the photon energy dependence. The techniques required

are similar to those employed in the calculation of ∆MK above, only with replacing one of the

effective Hamiltonian insertions with an electromagnetic current insertion.

We are currently performing an exploratory study of these matrix elements using the 243 ×64

ensembled mentioned above, using unphysically large pion and kaon masses of 430 MeV and 625

MeV, respectively, and an unphysically light charm quark mass of 533 MeV. Preliminary results

using only the connected diagrams can be found in Refs. [13, 14, 15]. While we have not obtained

a signal for the amplitude due to the absence of disconnected diagrams, we have demonstrated

the efficacy of our approach and have laid the groundwork for extending to physical masses. The

largest barrier is moving to a physical charm mass, which may be avoided if we work in the three-

flavor theory, as in the K → ππ calculation, where the charm has been integrated out perturbatively.

However phenomenological results suggest that the charm contribution to these decays may be

large and therefore it may be necessary to simulate the charm directly.

FCNC also enter in the rare kaon decays K → πνν̄ . Unlike the above these are short-distance

dominated and the long-distance component is expected to be only O(5%); however the NA62

experiment is expected to measure these decays to 10% precision, such that precise knowledge of

the long-distance component will soon be necessary. These processes require calculating a larger

set of operators that includes an effective vertex representing the Z-boson coupling, and short-

distance divergences must be handled by matching the bilocal operator to a point-like four-quark

operator. An exploratory calculation of this matrix element has been performed on a 163 × 32

ensemble with a−1 = 1.73 GeV and unphysical masses similar to those used above [16], again

demonstrating that this calculation is possible with current lattice techniques.
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