
P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

The Liquid Argon Software Toolkit (LArSoft): Goals,
Status and Plan

Ruth Pordes ∗†
Fermi National Accelerator Laboratory
E-mail: ruth@fnal.gov

Erica Snider
Fermi National Accelerator Laboratory
E-mail: erica@fnal.gov

LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation,
reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs).
It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and
ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for
the development, use, and sharing of code across experiments. The ultimate goal is to develop
fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is
based on the art framework and has a well-defined architecture to interface to other packages,
including to GEANT4 and GENIE simulation software and the Pandora software development
kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms
including their transition to new computing platforms. The development of the toolkit is driven by
the scientific stakeholders involved. The core infrastructure includes standard definitions of types
and constants, means to input experiment geometries as well as meta and event- data in several
formats, and relevant general utilities. Examples of algorithms experiments have contributed to
date are: photon-propagation; particle identification; hit finding, track finding and fitting; electro-
magnetic shower identification and reconstruction. We report on the status of the toolkit and plans
for future work.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

∗Speaker.
†On behalf of the LArSoft Collaboration; FERMILAB-CONF-16-326-CD

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:ruth@fnal.gov
mailto:erica@fnal.gov


P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

1. Introduction

This section introduces the LArSoft [1] collaboration goals, scope and participants.

1.1 What is LArSoft

LArSoft [2] provides a common software architecture and toolkit for sharing physics data
simulation, reconstruction and analysis for Liquid Argon Time Project Chamber (LArTPC) detectors
and experiments. The LArSoft collaboration includes the experiments involved as well as the
providers of the software infrastructure. The collaboration’s mission is to develop fully automated
processes for reconstruction of LArTPC event data, to share software and expertise in the algorithms
and tools, and to provide a collaborative environment for the use of existing and new codes and
methods. Representative physics outputs are shown in Fig. 1.

Figure 1: Examples of scientific output using LArSoft

1.2 Motivation for a shared software approach

Liquid argon detectors see very detailed information about each event—including many topologies
typical of neutrino interactions that are difficult or impossible to resolve in traditional technologies
(e.g. drift chambers). Each LArTPC provides essentially the same basic information after accounting
for small detector differences. Algorithms developed for one experiment can therefore be used by
another, as long as differences in geometry and detector response are properly accounted for. Aside
from reducing the cost of software development for large experiments, such sharing enables the use
of sophisticated infrastructure and algorithms by small experiments that otherwise lack the effort
for large scale software development.

LArSoft currently includes at least one, and in many cases more than one, algorithm for signal
processing, hit finding, identifying energy deposition clustering, shower finding, track finding,

1



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

vertex finding, and particle identification among others. Furthermore, LArSoft algorithms benefit
from the experience of multiple experiments.

1.3 LArSoft project

The LArSoft project coordinates the centralized software repositories, code acceptance and
validation procedures, architecture, documentation of best practices and examples, as well as
version release management and distribution. Configuration-time descriptions of the detector geometry,
electronics, electric field, etc., drive the experiment-specific execution of their end-to-end workflows.
The toolkit is coded in C++. It depends heavily on the art [3] event processing framework that is
in use by many other experiments as well as those using LArSoft.

Figure 2: art components

The art framework coordinates event processing
via configurable, pluggable modules that add data
to, and drop data from events, with conceptual
components as shown in Fig. 2.

The LArSoft software has a well-defined architecture
based both on art and external components supplying
capabilities such as particle generators, simulation,
data displays etc. The layered architecture supports
both common and experiment-specific algorithms and
methods, as well as the integration with and interfacing
to other packages. This architecture, outlined in
Fig. 3, also facilitates the evolution of algorithms and
environment to new methods (e.g. emerging Deep
Learning techniques) and technologies (e.g. new high
performance computing platforms).

1.4 Who Uses and Contributes to LArSoft

Figure 3: LArSoft layered architecture

The ArgoNeuT [4], LArIAT [5], MicroBooNE
[6], DUNE [7] and SBND [8] experiments
currently use LArSoft, with the ICARUS [9]
experiment considering some use of LArSoft
as part of the Short Baseline Neutrino (SBN)
program at Fermilab. The collaborations
contribute algorithms and tools, as well as set
requirements and priorities. The experiments
provide validation of new releases of the
software and define the physics goals
and metrics. ArgoNeuT was the first
experiment to use LArSoft, with members
of the experiment being instrumental in
moving existing methods from the ICARUS
experiment into the LArSoft framework. MicroBooNE’s first publications in the summer of 2016

2



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

included results from fully automated reconstruction of detector events. To meet this goal, the
collaboration has driven much of the short-term development and support as the characteristics of
their detector during data taking are fully explored. LArIAT, as a test-beam experiment, drives the
approaches to correctly integrate and calibrate the TPC data with the many other ancillary detectors.
DUNE has used and contributed to LArSoft for the DUNE 35ton prototype run at Fermilab in 2016.
Work continues for DUNE and ProtoDUNE reconstruction and simulation, as well as ProtoDUNE
data taking in 2018. SBND is coming up to speed and is benefiting from the algorithms already
developed, before extending them to meet their specific detector needs. The

The Scientific Computing Division (SCD) at Fermilab provides the resources and services
for the centralized code management and release activities. The core LArSoft project team also
oversees the architecture and guiding principles of the whole system—encouraging and coordinating
the means for sharing code, effectiveness of the contributions from the whole collaboration, and
connections to external software packages.

External software packages currently depended on by and/or interfaced to the toolkit include
those from the Pandora project [10], the art project, and the SCD simulation software groups.
These groups also contribute to the overall architecture, data structure and interface definitions to
enable a well modularized and extensible system.

A full set of requirements for the toolkit was developed at a workshop in 2015. As the
experiments and software evolve, capabilities are mapped and matched to the recorded requirements.
In addition, any new or modified requirements are captured. The current requirements document
[11] includes more than forty authors who contributed to a broad range of topics, arising from the
needs of their experiments.

2. Algorithms, Services and Data Products

Calibration

Calorimetry

raw data

Particle 
identification

Physics object reconstruction

Hit finding

Cluster finding

Track 
reconstruction

Shower 
reconstruction

wire signal

TPC hits

hit clusters

tracks

particle energy

particle ID

showers

Figure 4: Sample reconstruction workflow

This section describes the core components
that enable multiple developers to contribute
to a common set of software executables
which run a variety of physics algorithms
through configuration-driven workflows [12].
The executables that use the art framework,
are physics programs where physics algorithms,
provided as plug-in modules, are loaded and
invoked in the order defined by run-time
configuration files.

LArSoft provides abstract interfaces
to retrieve the information needed by
its algorithms, and at least a simple
reference implementation, typically reading
the information from program configuration
files, databases, or local data files. Algorithm modules are also responsible for extracting the input
data and storing the data output.

3



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

LArSoft code components can be grouped into broad functional categories: detector information;
persistent data structures (data products); function execution operations; utilities and framework
interfaces; graphical display; and examples [13]. LArSoft components are sequenced and combined
into scientific data processing workflows defined using the art FHiCL [14] language where individual
components interface to workflow steps and configurations used by any dependent products being
used, such as Pandora, GEANT4 [15] and Genie [16]. The typical workflow is aligned to three
main types of standard physics processes: simulation, reconstruction and analysis. Each user or
experiments production group, defines the steps of each workflow or chain according to their needs,
a typical example of which is shown in Fig. 4.

2.1 Algorithms

An algorithm in LArSoft (and art) is a C++ class that performs a single physics task or is
part of a multi-class physics task. An algorithm communicates with the infrastructure through the
LArSoft data products—both accessing these products and producing new ones. Typically methods
of an algorithm class extract the parameters that drive its execution (from the configuration files
identified with the run of the job), execute the physics method, have an output method, and are
accompanied by one or more tests to check the correctness of the algorithm in a variety of workflow
situations.

2.2 Services

A LArSoft service is a C++ class that performs a general operation in a single instance used
by one or more LArSoft algorithms and/or one or more art modules. Examples of services are a
random number generation and management service in art, and geometry and particle property files
in LArSoft. Services are configurable using FHiCL which, for example, provides for interfaces to
the detector specific properties and timings.

2.3 Data Products

The data products used and generated by such classes and generated by algorithms and services
can be saved into art ROOT [17] files. LArSoft data products provide information that is transferred
between algorithms, between algorithms and services. Translations between these data products
and external software package protocols direct data exchange and module integration/interaction.
For LArTPC data both the 2-dimensional and 3-dimensional information is crucial in order to
properly understand the operation of the detector and the physics properties of the events. The data
products describe both two-dimensional concepts, such as which energy depositions are closely
correlated in both time and space, as well as complicated three-dimensional concepts such as which
particle tracks and showers should be combined to describe a single particle interaction in the
detector.

3. The Code

Both the experiment-specific and shared code resides in a set of git repositories together with
scripts to build the different executables. Configuration FHiCL files provide for the workflow-
specific steps and parameters to be used for the different code executions.

4



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

Table 1: Approx. Lines of Code

Type Files Cmnts Code
C++ 905 53K 190K

Header 758 41K 47K
CMake 164 597 4.5K

Perl 12 438 4K
XML 17 174 2K

Python 14 393 1K
SUM: 2K 96K 250K

Included with the code are examples and documentation
that provide patterns and guidelines for developing services
and algorithms/modules. Guidelines include such aspects
as encouraging developers to use common interfaces for
detector and experiment-specific configuration information
(e.g. detector geometry) and avoiding experiment-specific
assumptions in the algorithms, e.g., the position of the first
plane or wire, the wire spacing etc.

Table 1 shows the scale of the common/shared software
repository as of August 2016. The experiment-specific code
repositories are of equivalent sizes.

3.1 Development Environment and Releases

The LArSoft build system ensures consistent builds among all supported platforms. The source
codes in the git repositories are built, and releases made using ups Fermilab code versioning tool
[18], cmake and cetbuildtool/mrb (the art build system); Documentation is automated through
the use of Doxygen [19] and LXR [20]. The examples, as mentioned above, and a user-focused
art workbook, support learning and communication of development patterns, available services,
and best practices. The LArSoft team provides integrated, tested, supported weekly releases of the
shared code, and help with experiment-specific code, that include changes in modules and services,
transition to new versions of the underlying dependent external software packages—including
operating systems etc.—and new capabilities. Multiple releases are supported to allow experiments
to adopt them according to their internal schedules and priorities. In September 2016, LArSoft
depended on ROOT 6, art V2.0, and Geant4 V10. The releases are distributed locally from a
central website, and distributed to other institutions through the use of the CVMFS [21] software
package. Releases are available for Scientific Linux (6, 7) [22], Ubuntu (14, potentially 16 in the
future) and MacOSX (Mavericks, Yosemite).

3.2 Continuous Integration

A centralized service based on the Jenkins [23] framework supports automated build and test
program execution after each code commit to the central repository—both for the shared code base
and for the experiment-specific software. Errors encountered in the tests result in automated email
being sent to the module owners. The memory and CPU usage of the tests, output parameter values
and comparisons are made available through a web interface. The centralized service includes local
test hardware but also supports test execution on remote sites to support OS and environments not
available at Fermilab. This service has been in place for more than two years and regularly proves
its value by finding issues before code is released into production.

5



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

3.3 Code Analyses

Figure 5: Analysis Process

A focus of the past year has been to define
and institute regular reviews of contributed code to
improve the quality of the resulting code base and
provide ongoing education to developers, many of
whom do not have formal C++ or software engineering
training. These analyses can be broad (architecture,
design, implementation) or narrow (code readthrough)
in scope and can take place at any time from when a
new module or service is proposed, through to modules
that have been in production for which performance
or other issues are noted. The analysis process is
structured in a series of steps as outlined in Fig. 5,
with an emphasis on the commitment to the final
step—follow up work—being discussed when the
review is started [24]. We support use of several
different performance measurement tools (igprof, valgrind, art memory and CPU time trackers)
and provide expert consulting to interpret their output.

The three module analyses conducted to date have resulted in constructive recommendations
and have been well received by the module owners and the collaborations in general. While this
work is resource intensive, there continues to be general agreement on its value.

4. The Future

As more data from more LArTPC detectors is collected, the event processing and analysis
techniques need to become more sophisticated and accurate. Work will continue to provide good
interfaces and integration with newly applied techniques such as machine/deep learning, image
and signal processing. The increased use of High Performance Computing (HPC) systems by the
High Energy Physics community and the evolution in computing hardware technologies available
motivates revisiting code for effectiveness when running in multi-core and other environments. In
collaboration with other experiments, the LArSoft community is looking to move away from the
more parochial build tools towards the use of the more widely adopted SPACK [25] package for
software build and distribution.

In other areas, work is continuing to improve the integration with the MicroBooNE lightweight
analysis framework LArLite [26]. This is resulting in better support for other independent frameworks
experiments may develop. Code analyses will continue on a regular basis with a goal to cover all
new developments as well as the most used legacy code. Continued collaboration with the Pandora
project is resulting in a more complete analysis and reconstruction system end-to-end—the aim is
to reduce duplication of effort whereever possible. However, due to the many challenges of good
anslysis of LArTPC events there is an increasing need to support multiple algorithms at any stage
of the processing pipeline.

Additional work aims to foster development of more comprehensive and configurable event
display and visualization tools—including extending the use of the Paraview visualization framework.

6



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

In conclusion, the LArSoft collaboration is energetic and the number of contributors to the
code is steadily increasing. There is strong commitment from the experiments and software providers
to common approaches and shared software as the needs and solutions evolve.

Acknowledgments

We thank the LArSoft Collaboration for its active contributions and support.

References

[1] http://larsoft.org

[2] E. D. Church, LArSoft: A Software Package for Liquid Argon Time Projection Drift
Chambers,[arXiv:1311.6774]

[3] C. Green, J. Kowalkowski, M. Paterno, M. Fischler, L. Garren and Q. Lu,The art framework, J. Phys.
Conf. Ser. 396, 022020 (2012).

[4] R. Acciarri et al. [ArgoNeuT Collaboration], First Measurement of Neutrino and Antineutrino
Coherent Charged Pion Production on Argon, Phys. Rev. Lett. 113, no. 26, 261801 (2014)
Corrigendum: [Phys. Rev. Lett. 114, no. 3, 039901 (2015)] doi:10.1103/PhysRevLett.113.261801,
10.1103/PhysRevLett.114.039901 [
tt arXiv:1408.0598].

[5] I. Nutini [LArIAT Collaboration], The LArIAT Experiment at Fermilab, J. Phys. Conf. Ser. 689, no. 1,
012020 (2016). doi:10.1088/1742-6596/689/1/012020

[6] K. Terao [MicroBooNE Collaboration], MicroBooNE: Liquid Argon TPC at Fermilab, JPS Conf.
Proc. 8, 023014 (2015).

[7] R. Acciarri et al. [DUNE Collaboration], Long-Baseline Neutrino Facility (LBNF) and Deep
Underground Neutrino Experiment (DUNE) : Volume 2: The Physics Program for DUNE at LBNF,
[arXiv:1512.06148].

[8] C. Adams et al. [LArTPC Collaboration], LAr1-ND: Testing Neutrino Anomalies with Multiple
LArTPC Detectors at Fermilab, [arXiv:1309.7987].

[9] M. Antonello et al., MicroBooNE and LAr1-ND and ICARUS-WA104 Collaborations,
arXiv:1503.01520 [physics.ins-det].

[10] J. S. Marshall and M. A. Thomson, The Pandora Software Development Kit for Pattern Recognition,
Eur. Phys. J. C 75, no. 9, 439 (2015) doi:10.1140/epjc/s10052-015-3659-3 [arXiv:1506.05348].

[11] https://cdcvs.fnal.gov/redmine/projects/lartpc-requirements/repository/revisions/master/entry/new-
document/requirements.pdf

[12] Jim Kowalkowski, Workflows and Workflow Systems at Fermilab
http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=5551

[13] https://cdcvs.fnal.gov/redmine/projects/larsoft-
architecture/repository/changes/output/LArSoftArchitecture.pdf?rev=master

[14] R. Putz Specification of the Fermilab Hierarchical Configuration Language
https://cdcvs.fnal.gov/redmine/attachments/download/6639/grammar.pdf

7



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
2

LArSoft Status Ruth Pordes

[15] J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006).

[16] C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614,
87 (2010) doi:10.1016/j.nima.2009.12.009 [arXiv:0905.2517].

[17] R. Brun, P. Canal and F. Rademakers, Design, development and evolution of the ROOT system,’ PoS
ACAT 2010, 002 (2010).

[18] M. Votava, et al, UPS UNIX product support IEEE Seventh Conf Real Time 91 Computer Appl Nucl
Part Plasma Phys. (pp. 156-159).

[19] http://www.stack.nl/ dimitri/doxygen/

[20] http://lxr.linux.no/+trees

[21] J. Blomer et al., CernVM-FS: delivering scientific software to globally distributed computing
resources; Proceedings of the first international workshop on Network-aware data management.
https://dl.acm.org/citation.cfm?id=2110217.2110225

[22] https://en.wikipedia.org/wiki/Scientific_Linux

[23] http://jenkins.io

[24] https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Code_analysis_process_and_tools

[25] http://software.llnl.gov/spack

[26] K. Terao, LArLite: C++ code development framework, https://github.com/LArLight/larlite

8


