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We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as

well as thermal conductivity for hot and dense quark matter within the Nambu- Jona Lasinio

(NJL) model. The estimation of the transport coefficients is made by solving the Boltzmann

kinetic equation within the relaxation time approximation. The transition rates are calculated in

a manifestly covariant manner to estimate the thermal-averaged cross sections for quark-quark

and quark-antiquark scattering. The calculations are performed for finite chemical potential also.

Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum

at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity

to entropy density, on the other hand, decreases with temperature with a sharp decrease near the

critical temperature, and vanishes beyond it. The coefficient of thermal conductivity also shows a

minimum at the critical temperature.
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1. Introduction

Transport properties of hot and dense matter have attracted a lot of attention recently, in the

context of relativistic heavy-ion collisions [1], as well as in astrophysical situations such as the

early Universe [2] and perhaps neutron stars [3]. The transport coefficients like shear and bulk

viscosity as well as thermal conductivity enter as theoretical inputs for hydrodynamic simulation

which is critical for interpretation of heavy ion collision data. The coefficients of viscosity influ-

ence various observables like the flow coefficients and the transverse momentum spectra. Further,

the temperature and chemical potential dependences of these coefficients may reveal the location

of phase transition. In many physical sytems, the shear viscosity is minimum at the phase transi-

tion point while the bulk viscosity is a maximum [4, 5]. In deed, the smallness of η/s to explain

heavy ion flow data is significant in connection with the conjectured lower bound η/s = 1/4π ,

the ’Kovtun-Son-Starinets’(KSS) bound obtained in the context of AdS/CFT correspondence [6].

Large bulk viscosity near the phase transition related to large values of the trace of energy momen-

tum tensor as indicated by lattice QCD simulation can affect the PT spectrum [7] as well as can give

rise to interesting phenomena like cavitation [8]. The other transport coefficient that also plays an

important role for hydrodynamic evolution at finite chemical potential is the thermal conductivity

[9]. The effects of thermal conductivity in the relativistic hydrodynamics in the context of quark

gluon plasma have only recently been studied[9, 10]. Although, in principle, these coefficients can

be directly estimated directly within QCD using Kubo formalism [11], QCD is strongly coupled for

the energies accessible in heavy-ion collision experiments making such estimates unreliable. First-

principle lattice simulations at finite chemical potential is also challenging and limited only to the

equilibrium properties at small baryon chemical potential [12, 13]. We attempt here to estimate the

transport coefficients using Boltzmann kinetic equation within relaxation time approximation. The

nontrivial factor that enters here is the relativistic generalization of the Boltzmann equation with a

mass and mean fields with medium dependence. Further, the effects of chemical potential is also

taken into account. The actual calculations are performed within the ambit of Nambu Jona Lasinio

model.

2. Thermodynamics of two-flavor NJL model and meson masses

We summarize here the thermodynamics of the simplest NJL model with two flavors with a

four-point interaction in the scalar and pseudo scalar channels, with the thermodynamic potential

given as[14, 15]

Ω(β ,µ) =−2NcN f

(2π)3

∫

√

k2 +M2dk

− 2NcN f

(2π)3β

∫

dk(ln(1+ exp(−β (E −µ))+ ln(1+ exp(−β (E +µ)))+
(M−m0)

2

4G
,

(2.1)

where, β is the inverse of temperature, µ is the quark chemical potential, and, E(k) =
√

k2 +M2

is the on-shell single-particle energy with ‘constituent’ quark mass M. The constituent quark mass
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satisfies the self-consistent gap equation

M = m0 +
2NcN f

(2π)3

∫

M

E(k)

(

1− f 0
−(k,β ,µ)− f 0

+(k,β ,µ)
)

dk, (2.2)

In the above f 0
∓(k,β ,µ) = (exp(β (E ∓µ))+1)−1

is the equilibrium fermion distribution function

for quarks and antiquarks, respectively, with a constituent mass M and, are related to the quark

number density in the standard way:

ρ =
2NcN f

(2π)3

∫

dk
[

f 0
−(k,β ,µ)− f 0

+(k,β ,µ)
]

. (2.3)

Within random phase approximation (RPA), the meson propagator can be calculated as [20]

DM(ω ,p) =
2iG

1−2GΠM(ω ,p)
(2.4)

where, –M = σ ,π for scalar and pseudo scalar channel mesons, respectively, and ΠM is the polar-

ization function in the corresponding mesonic channel. The mass of the meson is extracted from

the pole position of the meson propagator at zero momentum specified by the equation

1−2GReΠM(mM,0) = 0 (2.5)

Here, we have chosen to define the mass of the unbound resonance by the real part of ΠM.

For bound state solutions, i.e. for ω = mM < 2M, the polarization function is always real .

For mM > 2M, ΠM has an imaginary part that is related to the decay width of the resonance as

ΓM = ImΠM(mM,0)/mM.

3. Transport coefficients within relaxation time approximation.

In the relativistic kinetic theory, the shear (η) and bulk (ζ ) viscosity coefficients are defined as

coefficients of the space-space component of the energy momentum tensor away from the equilib-

rium. Similarly, the thermal conductivity (λ ) is defined in terms of the non equilibrium part of the

conserved current. For a fluid composed of quasi particles with medium dependent mass and under

relaxation time approximation for the Boltzmann kinetic equation, these coefficients are given as

[18, 15]

η =
1

15T
∑
a

∫

dΓa

p4
a

E2
a

(

τa f 0
a (1− f 0

a ))
)

, (3.1)

ζ =
1

9T
∑
a

∫

dΓaτa f 0
a (1− f 0

a )

×
[

p2

Ea
−3v2

n

(

Ea −T
∂Ea

∂T
−µ

∂Ea

∂ µ

)

+3

(

∂P

∂n

)

ε

(

∂Ea

∂ µ
− ta

)]2

(3.2)
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λ =
1

3

( w

nT

)2

∑
a

∫

dΓ
p2

E2
a

τa

(

ta − nEa

w

)2

f 0
a (1− f 0

a ) (3.3)

In the above, ‘a′ is the species’ index; dΓa = νadpa/(2π)3, νa being the degeneracy factor like

color and flavor and w = ε + p is the enthalpy density. Further, the single particle energy Ea(p) =
√

p2 +M2(T,µ) which is medium dependent and ta = ±1 for particles and antiparticles respec-

tively.The relaxation time –τa, the relaxation time for particle ‘a′, in general is a function of energy.

For the two body scattering process a,b → c,d, is given as

τ−1
a (Ea)≡ ωa(Ea) =

∫

dπbdπcdπd f 0
b W (a,b|c,d)(1− f 0

c )(1− f 0
d ), (3.4)

with

W (a,b : c,d) =
(2π)4δ 4(pa + pb − pc − pd)

2Ea2Eb2Ec2Ed

|M|2,

and M being the dimensionless amplitude for the corresponding scattering and dπ i = dpi/(2π)3.

One can also define an energy independent relaxation time as

τ−1
a =

1

na
∑
b

∫

dπaωa(Ea) f (Ea) (3.5)

Few comments may be in order. All the expressions for the transport coefficients are positive

definite as they should be. The expression for the transport coefficients reduce to already known

expression for these coefficients in limit of vanishing density [16, 17]. Although there are 12

possible scattering processes contributing to the relaxation time, using symmetry arguments (i-

spin, charge conjugation and crossing) one can evaluate only two independent matrix elements.

In the present case of two flavors there are 12 possible scattering processes that contribute to the

relaxation time. We can choose these, as in Ref. [20, 15], to be uū → uū and ud̄ → ud̄ and use the

symmetry conditions to calculate the rest. These quark scattering amplitudes are calculated within

the NJL model through exchange of mesons whose masses are also medium dependent. The details

of the matrix elements for the scattering with exchange of mesons are given in Ref.[20, 15] and we

do not repeat here.

4. Results and Discussions

For the two flavor NJL model, there are three parameters– the three momentum cut off Λ, the

four Fermi coupling G and the current quark mass m. We take them as m = 5.6 MeV, Λ=587.9

MeV and GΛ2 = 2.44. These are fixed so as to give mπ = 135 MeV, fπ = 92.4 MeV and the quark

condensate −〈ūu〉1/3 = 241 MeV. by fitting the pion mass, the pion decay constant and the quark

condensate. This leads to the vacuum value of the constituent quark mass to be M ≃ 400MeV. In

Fig. 1-a we have plotted the constituent masses M, and the meson masses mσ , mπ as a function of

temperature. The chiral cross over transition for µ = 0 defined by the maximum of dM/dT turns

out to be Tχ = 188 MeV while the Mott temperature TM defined my mπ(TM) = 2M(TM) turns out

to be about 197 MeV.
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Figure 1: (Fig 1 a) Temperature dependence of the masses of constituent quarks (M), and pions (Mπ ) and

sigma mesons (Mσ ) for µ = 0 and (Fig1-b) trace anamoly ((ε − 3p)/T 4) (Fig 1-b) for µ = 0 MeV and

µ = 100 MeV

Next, we discuss the estimation of averaged relaxation time from all the scatterings in the

present approach as a function of temperature. Let us recall that this quantity is inversely related

to the transition rate Wa,b|c,d as in Eq.(3.4) summed over all the particles other than ‘a′. In general,

the dominant contribution here comes from quark-antiquark scattering from the s channel through

propagation of the resonance states, the pions and the sigma. The mass of the sigma meson de-

creases with an increase in temperature, becoming a minimum at the Mott transition temperature

TM and leading to an enhancement of the cross section. This, in turn, leads to a minimum in the

relaxation time. Beyond the transition temperature the resonance masses increase with temperature

linearly leading to a smaller cross section and hence an increase in the relaxation time beyond the

Mott temperature. This generic feature is observed in Fig.2-a.

In Fig(2-b) we have plotted the shear viscosity to entropy ratio (
η
s

) as a function of temperature

for µ = 0 MeV and µ = 100 MeV . As expected from the τ behavior with temperature, η/s has

a minimum with η/s|min ∼ 0.24 at the critical temperature beyond which it increases slowly. This

behavior of having a minimum around the Mott transition due to the suppression of scattering cross

sections at higher temperatures is in contrast to results of Ref.[21] where it shows a monotonic

decrease with the value of the ratio going below the KSS bound. At finite µ , the ratio η/s is larger

as compared to vanishing µ . This is due to two reasons. Firstly, τ at finite µ is larger and, further,

the quark density is also larger as compared to the antiquarks at finite density.

In Fig. (3-a) we have plotted the specific bulk viscosity normalized to entropy density as a

function of temperature. We have also shown here the results of earlier calculations, based on
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Figure 2: Relaxation time as a function of temperature for µ = 0 MeV and for µ = 100MeV (Fig 2-a). In

Fig (2-b), shear viscosity to entropy density ratio is shown for µ = 0 MeV and µ = 100 MeV.

the linear sigma model [17], NJL model [21] and SHMC model [22]. The ratio of bulk viscosity

to entropy density increases rapidly near the critical temperature as temperature decrease from

high temperature beyond the critical temperature to temperatures below it. However, it is not a

maximum at the critical temperature. After the rapid rise near the critical temperature it increases

slowly. As may be observed, in all these calculations the ratio ζ/s decreases monotonically with

temperature. We might mention here that, such a behavior of decreasing bulk viscosity to entropy

ratio was also observed in estimations based on PHSD transport codes [24] as well as in the linear

sigma model in the large N limit [25]. On the other hand, when only ζ is plotted as a function of

T, there is a maximum at the Mott temperature. Such a peak in ζ was also observed in Ref. [26]

within a chiral perturbation theory framework with a maximum value of about ζ ∼ 0.008 GeV3 as

compared to ζ ∼ 0.01GeV3 in the NJL model here. However, the ratio ζ/s does not show such a

peak, probably because of the fact that the entropy of the system with massive constituent quarks

becomes rather small to mask the peak structure in ζ .Beyond the Mott transition temperature the

ratio ζ/s vanishes.

Finally, in Fig. 4 we have plotted thermal conductivity of quark matter at µ = 100 MeV in

units of T 2. Let us note that thermal conduction, which involves the relative flow of energy and

baryon number, vanishes at zero baryon density. In fact, λ diverges as λ ∼ 1/n2 as may be observed

in Eq.(3.3). Such a divergence, however, is inconsequential because, e.g., in the dissipative current,

it enters as λn2 [27, 16] and the heat conduction vanishes for µ = 0 [28]. We have therefore shown

the results for thermal conductivity for non vanishing µ arising from quark scatterings. As may be

noted, the ratio λ/T 2 shows a non monotonic behavior with a minimum at the critical temperature.

5
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Figure 3: Bulk viscosity to entropy ratio as a function of temperature in units of Tc for zero baryon density

(8-a). Also shown results from different models, the SHMC model of Khvosthukin etal[22], Kapusta etal

[17], the three flavor NJL results of Marty etal[21]. Bulk viscosity in units of GeV3 as a function of tem-

perature is shown in Fig. 8-b. Solid red curve corresponds to the present calculations while dotted curve

correspond to the results by Sasaki etal [23].

The origin of this again is related to the minimum of the relaxation time at the critical temperature.

The present behavior is in contrast to the same obtained in Ref. [21], where, the same ratio shows

a monotonically decreasing function of temperature. The behavior of λ/T 2 was also studied in

Ref.[29], where, the ratio showed an increasing behavior with temperature with, however, a slower

rise with temperature as compared to the results shown in Fig. 6. The reason for a faster rise of λ

with temperature beyond Tmott is two fold. Firstly, the pre factor in Eq.3.3, (w/nT )2, varies at T 2,

because, w rises as T 4, while n varies as µT 2 in the massless limit for small chemical potential. In

addition, at large temperature, the integral itself rises as T 3 apart from the temperature dependence

of relaxation time, which, again is an increasing function of temperature beyond Tmott . Within the

Green-Kubo approach, thermal conductivity was estimated for two flavors using NJL model[30]

as well as in Ref.[31] within the instanton liquid model where however the thermal conductivity

saturates beyond T=150 MeV in contrast to the present result.

To summarize, we have attempted here to compute the transport coefficient in NJL model. The

approach uses solving the Boltzmann kinetic equation within relaxation time approximation. To

estimate the relaxation time we have considered the quark-antiquark two body scatterings through

exchange of pion and sigma resonances. Since the meson masses are minimal at the transition

temperatures beyond which they are degenerate and increase linearly with temperature, the meson

propagator occurring in the transition amplitude lead to a large contribution to the cross section

6



P
o
S
(
I
N
P
C
2
0
1
6
)
3
3
6

Transport coefficients for quark matter Hiranmaya Mishra

50

100

150

200

250

300

350

100 150 200 250 300
T (MeV)

λ/
T

2

µ = 100MeV

Figure 4: Thermal conductivity(λ ) in units of T 2 for µ = 100 MeV.

for the quark- antiquark scattering. This eventually leads to a smaller relaxation time which, in

turn, leads to a minimum in the temperature dependence of the relaxation time. We have used the

expressions for the transport coefficients that are manifestly positive definite as they should be. The

expression for shear viscosity only depends on the relaxation time and the distribution functions.

However, the expressions for both the coefficients of bulk viscosity and thermal conductivity in-

volve equation of state. The expressions for the transport coefficients are direct generalization of

their counterparts at zero chemical potential [18]. All three transport coefficients are minimal at

the Mott temperature.

For the estimation of the relaxation time we have only included two-body scatterings. One can

generalize this to include decay processes involving the mesons decaying to a pair of quarks and

antiquarks[32]. We have investigated here the temperature dependence of the transport coefficients

in relation to the chiral transition in quark matter. It would be interesting to study the interplay of

chiral and deconfinement transition using a Polyakov loop to discuss this interdependence. Within

NJL model, below the transition temperature, the thermodynamic system is that of a gas of massive

constituent quarks as pions are not elementary degrees of freedom. Therefore it is desirable to have

a model with mesonic degrees of freedom like Polyakov quark meson coupling model. Some of

these investigations is in progress.

. .
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