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We discuss the possibility of a multidimensional structure of inhomogeneous chiral condensates,

which might be realized in cold and dense quark matter or the core of compact stars. For one-

dimensional structures, the system becomes unstable at finite temperature due to the Landau-

Peierls instability attributed to the excitation of the Nambu-Goldstone modes, with the result that

there is no long-range order, while quasi-long-range order is realized instead. On the other hand,

chirally inhomogeneous phases with two- or three-dimensional modulations may be realized as a

true long-range ordered phase at any temperature, as inferred from the Landau-Peierls theorem.

We here consider possible strategies to explore a multidimensional structure of chiral crystals.
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1. Introduction

The determination of a phase diagram for quantum chromodynamics (QCD) in the plane of
temperature and baryon chemical potential is among the ultimate goals in nuclear physics, both
experimentally and theoretically (see, e.g., [1] for a recent review). In contrast to, however, a
growing understanding of the high temperature regime via ultrarelativistic heavy-ion collisions
together withab initio lattice QCD simulations, the finite density regime is still less well understood
due in part to the so-called sign problem. For the experimental exploration of this regime, the so-
called beam energy scans at RHIC or future experiments prepared at FAIR, NICA, and J-PARC
have attracted attention, and at the same time the challenge of extracting the properties of dense
QCD matter from the data obtained in such experiments has stared. On the theoretical side, the
corresponding regime is expected to be very rich. In particular, in recent studies of the QCD
phase diagram at nonvanishing baryon density, various inhomogeneous phases have been discussed
in the context of chiral symmetry (for a comprehensive review see [2] and references therein),
and such phases have been suggested to appear in the cold and dense regime of the QCD phase
diagram within some effective models [3, 4, 5] or Dyson-Schwinger equation approach [6] (see,
e.g., Fig.1). Such a regime may be relevant for compact stars, so that inhomogeneous chiral phases
may possibly exist in the core of such stars and thus might have astrophysical implications [7, 8,
9]. In addition, since the presence of inhomogeneous phases can give rise to a modification of
the conventional QCD phase diagram, where inhomogeneous chiral phases emerge instead of the
conventional first-order chiral transition line and therefore the chiral transition region is extended,
it may have phenomenological implications for heavy-ion collisions as well.

The inhomogeneous chiral phase is characterized by a space-dependent but time-independent
order parameterφ (⃗x), whose general form consists of the scalar and pseudoscalar condensates:
φ (⃗x) ≡ ⟨ψ̄ψ⟩(⃗x)+ i⟨ψ̄ iγ5τaψ⟩(⃗x)δa3 = ∆(⃗x)eiθ (⃗x), whereψ is a light quark field,τa are the three
Pauli matrices in flavor space,∆(⃗x) is a space-dependent amplitude, andθ (⃗x)(= q⃗· x⃗) represents a

LP

T

µ
B

Figure 1: Schematic phase diagram for chiral symmetry at finite temperatureT and baryon chemical po-
tentialµB. The yellow region enclosed by two solid lines (phase boundaries), starting from the Lifshit point
(LP), shows inhomogeneous chiral phases (iχP), where chiral symmetry breaking is spatially inhomoge-
neous. The left boundary is of first or second order, depending on the type of iχP [3, 5], while the right one
is universally of second order. The dotted line represents the boundary between the spatially homogeneous
chiral symmetry breaking (χSB) and the chiral symmetry restored (χSR) phase, which is of second order in
the chiral limit.

1



P
o
S
(
I
N
P
C
2
0
1
6
)
3
2
6

Multidimensional structure of chiral crystals in quark matter Tong-Gyu Lee

spatially modulated phase with finite wavevectorq⃗. For one-dimensional (1D) modulations (e.g.,
let zbe the modulation direction, that is,q⃗· x⃗=(0,0,qz)), there are two well-known ground states of
inhomogeneous phases in the context of condensed matter physics: one is a Fulde-Ferrell (FF) type
condensate characterized by a modulating phase with constant amplitude,φ(z) = ∆eiθ(z), and the
other is the Larkin-Ovchinnikov (LO) type condensate characterized by a modulating amplitude,
φ(z) = ∆(z). In the context of quark matter, the former corresponds to the dual chiral density wave
(DCDW) [3], while the latter the real kink crystal (RKC) [4, 5]. Quarkyonic chiral spirals also
are of the former type in the context of quarkyonic matter [10]. These chiral modulations are one
dimensional in space and based on analytically known solutions for 1+1D systems [11], which
are embedded in three spatial dimensions. Within the mean-filed approximation, the RKC is more
favorable in energy than the DCDW. This situation, however, is reversed in a background magnetic
field (see, e.g., [2]).

While so far most studies of inhomogeneous chiral condensates have been devoted to 1D
modulations, a multidimensional modulation may also be realized. In the following, we will discuss
the properties of inhomogeneous chiral phases with 1D modulations beyond the mean-field level,
and then consider the possibility of a multidimensional structure of chiral crystals.

2. One-dimensional structure of chiral crystals

We consider a phase with a 1D modulation of the chiral condensate and discuss its stability
against low energy fluctuations about the order parameter, such as the Nambu-Goldstone (NG)
modes associated with spontaneous symmetry breaking. In the inhomogeneous chiral phase, in
general, not only theSU(2)L ×SU(2)R chiral symmetry but also the translational and rotational
symmetries are spontaneously broken, but only three [12] or four [13] independent NG modes
appear due to redundancies of broken global spacetime symmetries in addition to a locking of
flavor and translational symmetries.

For definiteness, let us consider here the inhomogeneous chiral condensate of the DCDW
type [3, 12]. Assuming thatφ(z) is a real four-component field, we can define the DCDW ground
state asφ0(z) = ∆(cosθ(z),0,0,sinθ(z))T ≡ (σ(z),0,0,π3(z))T with σ(z)≡ ⟨ψ̄ψ⟩(z) andπ3(z)≡
⟨ψ̄ iγ5τ3ψ⟩(z), whereθ(z) = qz for the 1D modulation (see below, Fig.2). We then introduce gen-
eral fluctuations aroundφ0(z) using theS3 parametrization beingφ = (∆+δ )U(βi)φ0 with U(βi)≡

z

Figure 2: Schematic illustration of the configuration of the DCDW condensate [3, 12].
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Π3
i=1eiβiLi [12], where the parametersδ , βi , andLi correspond to an amplitude fluctuation, a rota-

tion in the 4D sphere of the chiral circle, and theO(4) generators, respectively. This, to leading or-
der in fluctuations, yieldsφ(z) = (1+δ )φ0(z)+(−∆β3sinqz,∆β1cosqz,∆β2cosqz,∆β3cosqz)T +

O(β 2
i ,δ 2,δβi), which illustrates the fluctuations corresponding to both the NG and Higgs modes.

Promoting these parameters to fields, i.e.,δ → δ (t, x⃗) andβi → βi(t, x⃗), we can take into account
the local fluctuations, so that a low energy effective theory for such fluctuations can be derived in
a systematic manner within the Gaussian approximation. From this, we can obtain the dispersion
relation of the massless modesω03 involving δ andβ3, together with that of the modesω12 in-
volving β1 andβ2. The former takes the formω2

03 = Ak2
z +B(⃗k2)2+C⃗k2k2

z +Dk4
z, while the latter

ω2
12= ak2

z +b(⃗k2)2, which are spatially anisotropic and particularly soft in directions normal to the
modulation (i.e.,x-y directions) due to the absence of quadratic terms in the transverse momentum
(i.e., terms withk2

x andk2
y). The coefficientsA,B,C,D,a, andb depend on the Ginzburg-Landau co-

efficients in addition to the variational parameters,∆ andq, (see [12] for details of the coefficients),
which can be evaluated within chiral effective models.

Such low energy modes with the dispersions mentioned above impact on the condensed phase
of the DCDW type and consequently wash out the order parameter, i.e.,⟨φ(z)⟩ = ⟨U(βi)φ0(z)⟩ =
0, where⟨· · · ⟩ means the thermal average, owing to the softening of the fluctuations in thex-y
directions (strictly speaking, the logarithmic divergence of Gaussian fluctuations in the infrared
region). The same applies to the case of the RKC condensate [13], whose ground state takes the
form φ0(z) = (c

√
νsn(cz|ν),0,0,0) ≡ (σ(z),0,0,0), where sn is a Jacobian elliptic function with

the modulusν ∈ [0,1], andc is a scale related to the maximum mean-field value ofφ0(z) and also
is a function ofν . Therefore, the 1D structure of such inhomogeneous phases is unstable and
eventually disappears at finite temperature, which is termed the Landau-Peierls instability [14].

However, although a disordered phase is usually characterized by exponential decays of the
order parameter correlation function at large distances, the present system exhibits a power-law de-
cay of the spatial correlations [12]: ⟨φ(z⃗ez)φ(0)⟩ ∝ cosqz(z/z0)

−η(T) for thez direction parallel to
the modulation, while⟨φ(xt⃗et)φ(0)⟩ ∝ (xt/x0)

−2η(T) for thex-y directions transverse to the mod-
ulation, wherext is a transverse distance,e⃗ is an unit vector in the spatial direction, the exponent
depending temperature,η(T)(= T/T0), corresponds to the so-called Caillé exponent, and allz0,
x0, andT0 can be determined within the effective model. This algebraic behavior of the correlation
function is known as quasi-long-range order. Thus, the inhomogeneous chiral phase with a 1D
periodic structure may survive in a quasi-1D ordered form [12, 13] even at finite temperature, as in
the smectic-A phases of liquid crystals (see, e.g., [15] for a review of smectic states). Therefore,
such a phase should be distinguished from a disordered phase, albeit not true long-range order.

On the other hand, there are some possibilities to suppress the Landau-Peierls instability, which
may lead to a long-range ordered phase. Firstly, in the case of theT = 0 limit, quantum fluctua-
tions are not so strong as to wash out the order parameter, that is, the system is relatively stable, so
that the DCDW phase at vanishing temperature is expected to truly exist as a long-range ordered
phase. Also, while this phase is critical atT > 0 due to quasi-long-range order, it may be prac-
tically realized also in the very low-temperature region ofT < T0. Secondly, unlike the infinite
system, the finite system, where the range of the order-parameter correlations exceeds the system
size, can permit a 1D structure of the inhomogeneous condensate. The reason why the inhomoge-
neous phase with 1D modulation is unstable at nonzero temperatures is that Gaussian fluctuations
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are logarithmically divergent in the long-wavelength limit owing to the soft modes in the transverse
direction (i.e., transverse momentum integral diverges in the infrared region), so that one can intro-
duce an infrared cutoff for the regularization and regard it as a transverse scale of the system. If the
length scale of the fluctuations is much larger than the system size, the 1D structure of the conden-
sate can remain finite (i.e., finite-size effects) [13, 16]. Similarly, the algebraic (quasi-long-range)
correlations can effectively emulate true long-range order, depending on the experimental reso-
lution [16, 15], where one can distinguish the Bragg peaks (long-range order) from quasi-Bragg
peaks (algebraic order) via very high-resolution measurements. Thirdly, since in general external
magnetic fields (B) explicitly break the rotational symmetry of the system, the dispersion relation of
the NG modes associated with spontaneously broken symmetries can be changed in the inhomoge-
neous chiral phase under the situation ofB ̸= 0. As already mentioned above, there exists a spatial
anisotropy of the dispersion relation in the DCDW phase due to the global rotational symmetry of
the system, and this stems from the lack of the terms withk2

x andk2
y. Thus, in an external magnetic

field, such terms would make a comeback depending onB, which gives rise to an improvement
for the softening of the transverse fluctuations and hence leads to a stable inhomogeneous phase
with a 1D modulation. Finally, if the condensate modulation is two- or three-dimensional in space,
since the soft directions of the condensate decrease compared to those of the 1D condensate, the
suppression of the infrared singularity of Gaussian fluctuations can be expected [14]. Therefore,
the stabilization occurs and true long-range order can be realized. Here we focus on this last topic.

3. Multidimensional structure of chiral crystals

We now consider the possibility of a multidimensional chiral crystal. Although it would be
interesting to see whether a phase with true long-range order in 2D or 3D modulations is energeti-
cally favored over one with quasi-long-range order in 1D modulations, we restrict ourselves only to
true long-range ordered phases here. To determine whether a multidimensional modulation is ther-
modynamically favored, one must compare its free energy with that of 1D modulation. However,
in contrast to purely 1+1D systems where analytic solutions are known [11], analytic solutions for
2+1D or 3+1D systems have yet to be discovered. Thus, one often assumes possibleansätzefor
2D or 3D modulations.

In the vicinity of the Lifshitz point (LP), a Ginzburg-Landau analysis using someansätzefor
multidimensional LO-type real condensates [17], together with the 1D solitonic-type (RKC) and
1D FF-type (DCDW) condensates, concludes that the RKC condensate is the most favored, fol-
lowed in order by the 1D LO-type, 2D LO-type, 3D LO-type, and DCDW-type condensates. It
is interesting to note here that within multidimensional FF-type complex condensates the most fa-
vored condensate is the 2D condensate, but not the 1D one (i.e., DCDW). A similar result holds for
the case of vanishing temperature; a Nambu-Jona-Lasinio (NJL) model calculation atT = 0 using
two 2D LO-typeansätze(square and hexagonal lattices) [18] shows that the 2D modulations are
disfavored against the 1D ones (i.e., RKC). Thus, at least around the LP or at zero temperature,
1D modulations are found to be favored compared with 2D or 3D ones. However, a phase with
multidimensional modulation may be realized in different areas of inhomogeneous chiral phases.
Actually, remarkable studies are reported in a variety of systems [19, 20, 21, 22, 23], where the for-
mation of a multidimensional crystalline structure is predicted. On the other hand, interestingly, an
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NJL-model analysis at high density region shows that 2D modulations tend to be favored against
1D ones [18]. In such a region, it has been suggested that the so-called inhomogeneous conti-
nent may appear [24, 25, 26], which means that 2D structures could be formed at high densities.
However, at present, a definite understanding of this region have yet to be obtained.

Another possible approach to find a multidimensional chiral crystal, in particular outside
the vicinity of the LP and the region atT = 0, is to employ the Thomas-Fermi approximation
(TFA) [19]. Using the formula for single-particle energy levels (ETF) obtained in the TFA, we can
numerically investigate whether the free energy for a givenansätzof the multidimensional mod-
ulation is energetically favored, as with the case of the GL analysis [17]. Here, the expression of
ETF should include the gradient term of the condensateM(⃗x)(= ∆(⃗x)eiθ (⃗x)), but there is no such
term in the conventional NJL model. Thus, we need to effectively extract the derivative coupling
term (e.g., a term with∇M(⃗x), in particular∇∆(⃗x)) in ETF by a good scale transformation, as in
a local chiral transformation (ψ → eiγ5θ (⃗x)/2ψ) which leads to a momentum-dependent interaction
term (e.g., a term with∇θ (⃗x)) in the formula for the energy spectrum (see [3] for the DCDW with
∇θ(z) = q). In this study, we have assumed the shape of the condensate functionM(⃗x) as a spe-
cific ansätz, so that there is no self-consistency betweenETF andM(⃗x). This goes for the GL and
NJL-model analyses. Therefore, in general, we should explore the structure ofM(⃗x) without any
assumption.

We thus consider here a self-consistent way to numerically explore a multidimensional struc-
ture of chiral crystals without assuming anansätzfor the condensate function. Within the NJL
model, one can obtain the self-consistency condition onM(⃗x): M(⃗x) ∝ ∑En

tanh(En−µ
2T )ψ̄ (⃗x)(1−

γ5)ψ (⃗x) [5]. Here, by discretizing the effective Dirac equation (HDψi = Eiψi) with the Hamil-
tonianHD = −iγ0γ i∂i + γ0M(⃗x), the eigenvalues{Ei} and the corresponding eigenvectors (wave
functions){ψi} for eigenstates{i} can be determined simultaneously and numerically. Using these
obtained values, the possible phase diagram can be derived from the estimation of the thermody-
namic potential via the energetically favoredM(⃗x). A similar approach without any specific ansätz
has been recently presented employing the finite-mode approach [26], where the inhomogeneous
condensate is written as a superposition of a finite number of plane waves. Before investigating an
arbitraryM(⃗x) with 2D or 3D spatial modulations, we first need to correctly reproduce the well-
known results in 1+1D systems [11] to check the validity of our method. Thus, taking into account
the 1D condensate (RKC or chiral spiral), we demonstrate whether the shape of the numerically
obtainedM(x) becomes close to analytic solutions, such as the Jacobisnelliptic function or plane
wave solution. By discretizing the 1+1D Dirac equation using the finite-difference method (e.g.,
∂x f (x) ≡ ∆ f = ( fi+1− fi−1)/2∆x) and then solving the corresponding nonlinear complex eigen-
value problem satisfying the shape of energy spectrum in purely 1+1 dimensions (symmetric for
the RKC, while asymmetry for the chiral spiral), we can obtain the respectiveEi andψi = ( fi ,gi).
Eventually, the Gross-Neveu type phase diagram [11] can be obtained, and then the investigation
toward 2D chiral crystals is permitted.

4. Summary and outlook

We discussed the properties of inhomogeneous chiral phases with 1D spatial modulations. In
particular, we focused on the stability of 1D modulations against fluctuations. Consequently, the 1D
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structure is unstable at finite temperature due to the NG mode excitations, and therefore there is no
true long-range order, albeit being quasi-long-range order. One of factors to evacuate this instability
is two- or three-dimensional modulations, as inferred from the Landau-Peierls theorem. We then
argued the possibility of a multidimensional chiral crystal. While some studies have been showed
that 1D modulations are the most favored, a multidimensional modulation in a region other than
that around LP and ofT = 0 may become energetically preferred over 1D modulations. Of cause,
whether higher-dimensional modulations are favored over quasi-long-range order is nontrivial, so
that it would also be worthwhile to compare their free energies. This is still an open question. On
the other hand, for the search for a multidimensional structure of chiral crystals, we presented some
possible strategies: one is a numerical approach using the TFA, and the other is a self-consistent
way without any assumption on the shape of the condensate functions. The latter, in particular, may
further need to a reduction of computational costs or a major breakthrough in solving a nonlinear
eigenvalue problem with a complicated matrix in an effort to study a multidimensional structure.

It would be interesting to consider Coulomb interactions in the system, which may lead to
pasta structures (chiral pastas). For phenomenological implications, it may be also worthwhile to
investigate whether or not there appear pasta structures (as in hadron-quark mixed phases [27]) at
zero temperature in general and gyroid structures [28] at finite temperature in particular. Detailed
discussion on this direction remains as a future problem.
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