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Variational analysis techniques in lattice QCD are powerful tools that give access to the full spec-
trum of QCD. At zero momentum, these techniques are well established and can cleanly isolate
energy eigenstates of either positive or negative parity. In order to compute the form factors of a
single energy eigenstate, we must perform a variational analysis at non-zero momentum. When
we do this with baryons, we run into issues with parity mixing in the Dirac spinors, as boosted
baryons are not eigenstates of parity. Due to this parity mixing, care must be taken to ensure
that the projected correlation functions provided by the variational analysis correspond to the
same states at zero momentum. This can be achieved through the parity-expanded variational
analysis (PEVA) technique, a novel method developed at the University of Adelaide for ensuring
the successful and consistent isolation of boosted baryons. Utilising this technique, we are able
to compute the form factors of baryon excitations without contamination from other states. We
present world-first calculations of excited state nucleon form factors using this new technique.
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1. Introduction

To evaluate the form factors and transition moments of baryon excitations in lattice QCD, it
is necessary to isolate these states at finite momentum. Excited baryons have been isolated on the
lattice through a combination of parity projection and variational analysis techniques [1, 2, 3, 4,
5, 6, 7, 8, 9]. At zero momentum, these techniques are well established. However, at non-zero
momentum, these techniques admit opposite parity contaminations.

To resolve this issue, the Parity-Expanded Variational Analysis (PEVA) technique [10] was de-
veloped. By introducing a novel Dirac projector and expanding the operator basis used to construct
the correlation matrix, we are able to isolate states of both parities at finite momentum.

Utilising the PEVA technique, we are able to present here the world’s first lattice QCD calcu-
lations of nucleon excited state form factors free from opposite parity contaminations. Specifically,
the Sachs electromagnetic form factors of a localised negative parity nucleon excitation are ex-
amined. Furthermore, we clearly demonstrate the efficacy of variational analysis techniques at
providing access to ground state form factors with extremely good control over excited state ef-
fects.

2. Parity-Expanded Variational Analysis

The PEVA technique [10] was developed to solve the problem of opposite parity contamina-
tions at finite momentum. In this section, we briefly describe how it can be used in calculations of
baryon form factors.

The PEVA technique works by expanding the operator basis of the correlation matrix to isolate
energy eigenstates of both rest-frame parities simultaneously while still retaining a signature of this
parity. By considering the Dirac structure of the unprojected correlation matrix, we construct the
momentum-dependent projector Γ±p := 1

4 (I+ γ4)(I∓ iγ5γkp̂k). This allows us to construct a set of

“parity-signature” projected operators
{

χ i
±p = Γ±p χ i , χ i′

±p = Γ±p γ5 χ i
}

. The primed indices used
here denote the inclusion of γ5, inverting the way the operators transform under parity.

By performing a variational analysis with this expanded basis [10], we construct optimised
operators φ α

±p(x) that couple to each state α . We can then use these operators to calculate the three
point correlation function

G µ

± (p
′,p; t2, t1; α) := ∑

x2,x1

e−ip′·x2 ei(p′−p)·x1 〈φ α

±p′(x2) |Jµ(x1) |φ α
±p(0)〉 ,

where Jµ is the O(a)-improved [11] conserved vector current used in Ref. [12], inserted with some
three-momentum transfer q = p′−p. We can take the spinor trace of this with some projector Γ to
get the projected three point correlation function Gµ

±(p′,p; t2, t1; Γ; α) := tr
(
ΓG µ

± (p′,p; t2, t1; α)
)
.

We can then construct the reduced ratio,

R±(p′,p; α; r,s) :=

√√√√∣∣∣∣∣rµ Gµ

±(p′,p; t2, t1; sν Γν ; α) rρ Gρ

±(p,p′; t2, t1; sσ Γσ ; α)

G(p′; t2; α)G(p; t2; α)

∣∣∣∣∣
× sign

(
rγ Gγ

±(p
′,p; t2, t1; sδ Γδ ; α)

)√ 2Eα(p)
Eα(p)+mα

√
2Eα(p′)

Eα(p′)+mα

,
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where rµ and sµ are coefficients selected to determine the form factors. By investigating the rµ and
sµ dependence of R±, we find that the clearest signals are given by

RT
± =

2
1± p̂ · p̂′

R±
(
p′,p; α; (1,0),(1,0)

)
, and

RS
∓ =

2
1± p̂ · p̂′

R∓
(
p′,p; α; (0, r̂),(0, ŝ)

)
,

where ŝ is chosen such that p · ŝ = 0 = p′ · ŝ, r̂ is equal to q̂× ŝ, and the sign ± is chosen such that
1± p̂ · p̂′ is maximised. We can then find the Sachs electric and magnetic form factors

GE(Q2) =
[
Q2 (Eα(p′)+Eα(p)

) (
(Eα(p)+mα)

(
Eα(p′)+mα

)
∓
∣∣p∣∣∣∣p′∣∣) RT

±
±2
∣∣q∣∣(1∓ p̂ · p̂′

)∣∣p∣∣∣∣p′∣∣((Eα(p)+mα)
(
Eα(p′)+mα

)
±
∣∣p∣∣∣∣p′∣∣) RS

∓
]

/
[
4mα

[(
Eα(p)Eα(p′)+m2

α ∓
∣∣p∣∣∣∣p′∣∣) ∣∣q∣∣2 +4

∣∣p∣∣2∣∣p′∣∣2 (1∓ p̂ · p̂′
)]]

, and

GM(Q2) =
[
±2
(
1∓ p̂ · p̂′

)∣∣p∣∣∣∣p′∣∣((Eα(p)+mα)
(
Eα(p′)+mα

)
±
∣∣p∣∣∣∣p′∣∣) RT

±
−
∣∣q∣∣(Eα(p′)+Eα(p)

) (
(Eα(p)+mα)

(
Eα(p′)+mα

)
∓
∣∣p∣∣∣∣p′∣∣) RS

∓
]

/
[
2
[(

Eα(p)Eα(p′)+m2
α ∓

∣∣p∣∣∣∣p′∣∣) ∣∣q∣∣2 +4
∣∣p∣∣2∣∣p′∣∣2 (1∓ p̂ · p̂′

)]]
.

The details of this procedure will be presented in full in Ref. [13].

3. Results

Lattice QCD calculations of the Sachs electric and magnetic form factors of the ground state
nucleon and first negative-parity excitation are presented with good control over opposite parity
contaminations. The three-momentum of the current insertion is fixed. However, by varying the
final state momenta, we are able to gain access to these form factors at a range of Q2 below |qmin|2 =
0.166(5)GeV2 and compare the Q2 dependence to a dipole fit. The final state momenta considered
and the corresponding Q2 values for both states used here are presented in Table 1.

These results are calculated on the second lightest PACS-CS (2+1)-flavour full-QCD ensem-
ble [14], made available through the ILDG [15]. This ensemble uses a 323×64 lattice, and employs

Table 1: The final state and initial state momenta considered in units of the lattice momentum 2π

LS
where LS

is the spatial length of the lattice, and the corresponding Q2 for each state in physical units.

Ground state First -ve parity excitation
p′ (l.u.) p (l.u.) Q2 (GeV2) Q2 (GeV2)
(1,0,0) (0,0,0) 0.16028(14) 0.16352(13)
(1,0,1) (0,0,1) 0.16097(11) 0.16366(12)
(2,0,0) (1,0,0) 0.1255(8) 0.1462(10)
(2,0,1) (1,0,1) 0.1295(7) 0.1472(9)
(3,0,0) (2,0,0) 0.0872(11) 0.1205(18)
(3,0,1) (2,0,1) 0.0928(10) 0.1224(17)
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an Iwasaki gauge action with β = 1.90 and non-perturbatively O(a)-improved Wilson quarks. We
use the mπ = 296MeV PACS-CS ensemble, and set the scale using the Sommer parameter with
a physical value of r0 = 0.4921(64) fm, giving a lattice spacing of a = 0.0951(13) fm. With this
scale, our pion mass is 280(4)MeV. We use 367 gauge field configurations, with two source loca-
tions on each configuration. The χ2/dof is calculated with the full covariance matrix, and all fits
have χ2/dof < 1.2.

For the analyses in this section, we start with a basis of eight operators, by taking two conven-
tional spin-1/2 nucleon operators

χ1 = ε
abc [ua>(Cγ5)db]uc , and (3.1)

χ2 = ε
abc [ua>(C)db]γ5 uc , (3.2)

and applying 16, 35, 100, and 200 sweeps of gauge invariant Gaussian smearing when creating the
propagators [2]. For the conventional variational analysis, we take this basis of eight operators and
project with Γ±, and for the PEVA analysis, we parity expand the basis to sixteen operators and
project with Γp and Γ′p.

In extracting the form factors, we consider a fixed boundary condition in the time direction at
t = Nt . We fix the source at time slice 16, and utilising sequential source techniques [16] invert
through the current, centring the conserved current insertion at time slice 21 [17]. We choose time
slice 21 by inspecting the two point correlation functions associated with each state and observing
that excited state contaminations are strongly suppressed by time slice 21. We then extract the form
factors as outlined in Sec. 2 for every possible sink time and look for a plateau consistent with a
single-state ansatz.

Inverting through the current requires us to choose our current operators and momentum trans-
fers at inversion time, but allows us to vary the sink momentum, and thus the source momentum.
This gives us access to a range of values of

Q2 =
(
Eα(p′)−Eα(p)

)2−q2 , (3.3)

including values approaching Q2 = 0.
Beginning with the ground state, in Fig. 1 we plot GE(Q2) for both the proton and the neutron

with respect to Q2. Our tactic of projecting different final momenta to access smaller Q2 values is
seen to work well for the momenta considered. Comparing our extracted form factor for the proton
to a dipole ansatz [12]

Gdipole(Q2) =
G(0)

1+Q2/Λ2 , (3.4)

fixing G(0) to the proton’s charge of 1, we find good agreement. The best fit corresponds to a rms
charge radius of 0.689(11) fm, somewhat smaller than the physical proton radius of 0.8751(61) fm
[18] as expected due to our unphysically heavy pion mass and well understood finite volume effects
[19].

In Fig. 2 we plot GM(Q2) of the proton and neutron with respect to Q2. Comparing our ex-
tracted form factor for the proton to a dipole ansatz, we find good agreement. The fit corresponds to
a rms magnetic radius of 0.46(23) fm and a magnetic moment of 1.95(25)µN . Comparing our ex-
tracted form factor for the neutron to a dipole ansatz, we find a fit corresponding to a rms magnetic
radius of 0.72(19) fm and a magnetic moment of −1.46(22)µN .
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Figure 1: GE(Q2) for the ground state proton and neutron. We plot the form factor for the neutron with blue
triangles, and the proton with orange squares. A dipole fit to the proton’s electric form factor is illustrated
by the shaded band. This fit corresponds to a rms charge radius of 0.689(11) fm.
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Figure 2: GM(Q2) for the ground state proton and neutron. We plot the form factor for the proton with
green pentagons, and the neutron with red hexagons. Dipole fits to the proton and neutron’s magnetic form
factors are illustrated by the shaded bands. The fit to the proton corresponds to a rms magnetic radius of
0.46(23) fm and a magnetic moment of 1.95(25)µN . The fit to the neutron corresponds to a rms magnetic
radius of 0.72(19) fm and a magnetic moment of −1.46(22)µN .

Moving on to the first negative parity excited state, in Fig. 3 we plot GE(Q2) with respect to Q2.
Once again our tactic of accessing multiple Q2 values through final state momentum projections
works well. Comparing our extracted form factor for the proton excitation to a dipole ansatz, we
find good agreement with a rms charge radius of 0.655(40) fm. The localised nature of this state is
evident in its small charge radius, which is consistent with the radius of the ground state proton.

In Fig. 4, we present GM(Q2) for this same excitation. While the largest final state momenta
considered have large errors in this case, we are still able to get some idea of the Q2 dependence
from the other final state momenta. From these results, it appears that for the first negative parity
excitation, GM(Q2) has a different Q2 dependence than GE(Q2).
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Figure 3: GE(Q2) for the first negative parity excitation of the proton and neutron. We plot the form
factor for the neutron with blue triangles, and the proton with orange squares. A dipole fit to the excited
proton’s electric form factor is illustrated by the shaded band. This fit corresponds to a rms charge radius of
0.655(40) fm.
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Figure 4: GM(Q2) for the first negative parity excitation of the proton and neutron. We plot the form factor
for the proton with green pentagons, and the neutron with red hexagons. These values are insufficient to
constrain any reasonable dipole fit.

4. Conclusion

We have demonstrated the effectiveness of the PEVA technique at extracting baryon form
factors. This approach is effective at removing excited state contaminations of both parities [10,
20]. By varying the sink momentum, we gained access to a range of Q2 values, allowing us to
compare the Q2 dependence of the extracted form factors to a simple dipole ansatz, gaining insight
into the structure of the states.

Future work will involve extending this analysis to more pion masses, higher momentum trans-
fers and thus larger values of Q2, and other excitations of the nucleon, leading to a comprehensive
understanding of excited nucleon structure. In addition, it will be important to apply these tech-
niques to analysing transition moments on the lattice, and to analysing non-localised multi-particle
channels.
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