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We describe the fission dynamics of 240Pu within an implementation of the Density Functional
Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical
role played by the pairing correlations, which even though are not the driving force in this complex
dynamics, are providing the essential lubricant, without which the nuclear shape evolution would
come to a screeching halt. The evolution is found to be much slower than previously expected in
this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions
and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.
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Immediately after the epochal discovery of induced nuclear fission by Hahn and Strassmann [1]
Meitner and Frisch [2], Bohr and Wheeler [3, 4] recognized that the main driving force leading to
fission is the profile of the deformation nuclear energy arising form the competition between the
nuclear surface and the Coulomb energies. The reasoning was based on a classical liquid charged
drop model of a nucleus and the role of quantum mechanics started to became clear only with
time. It was however soon realized that in nuclei nucleons form shells and behave in many in-
stances as independent particles, like electrons in atoms, or in other words that the nucleons live
on quantized orbits [5, 6], and that the spin-orbit interaction plays a critical role in the formation
of the nuclear shells. Hill and Wheeler [7] were apparently the first to appreciate how the liquid
drop deformation energy emerges from a quantum mechanical approach based on considering the
quantized single-particle motion of nucleons in a slowly deforming potential well. The liquid drop
potential deformation energy in their approach in the first approximation was an envelope of many
intersecting parabolas, due to single-particle level crossings, see Figure 1. At single-particle level
crossings of the last occupied level nucleons jump from one level to another, in order to main-
tain the sphericity of the Femi sphere. If a nucleus elongates on the way to scission into two
fragments, without such a redistribution of nucleons at the Fermi level, the Fermi sphere would
become oblate, while the spatial shape of the nucleus becomes prolate, and that would lead to a
volume excitation energy of the nucleus. In the case of nuclei, which are saturating systems with a
surface tension, while deforming by changing the shape of their surface only and while maintaining
constant their volume, only the Coulomb and the surface contributions to the total energy changes.

Figure 1: The qualitative evolution of the single-particle levels
and of the total nuclear energy (lower panel) as a function of
nuclear deformation [7, 8]. The Fermi level is shown with a
thick line.

Each single-particle level is typ-
ically double degenerate, due to
Kramers degeneracy, and nucleons
would have to jump in pairs, oth-
erwise the nuclear shape evolu-
tion towards scission would be hin-
dered [8, 9]. Pairing interaction,
which in spite of being relatively
weak in nuclei, is very effective of
promoting simultaneously two nu-
cleons from time-reverse orbits into
other time-reverse orbits and thus it
greatly facilitates the evolution of
the nuclear shape towards scission.

It was established later that
single-particle level bunching ex-
ist in nuclear systems not only in
the case of spherical nuclei (as in
the case of atoms), but also in de-
formed and highly deformed nu-
clei. At first this phenomenon
was experimentally observed in the
case of fission isomers at very large
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elongations [10, 11, 12] and subsequently in the case of superdeformed nuclei [13]. The existence
of nucleonic shells at large deformations results in a potential energy deformation surface with
significant maxima and minima, which are otherwise absent in the case of a classical charged liq-
uid drop. The level crossings lead to a potential energy surface which appears quite rough, even
though it can be smoothed out in the presence of pairing correlations, which results in avoided
level crossings. The nuclear deformation potential energy surface appears in the end to have a
rather complicated structure. The gross behavior is determined by the surface and Coulomb energy
and resembles the deformation energy of a charged liquid drop and that is the main driving force
leading to fission. Because nuclei are relatively small quantum systems made of a bit more than a
couple hundred fermions, which to a large extend behave as being independent, a rather rich shell
structure exists, even for large deformations. This shell structure imprints on the overall charged
liquid drop energy hills and valleys [11, 12]. On the way to the scission configuration nucleons
have to perform a large number of redistributions between the single-particle levels crossing at the
Fermi level, in order to maintain the spherical symmetry of their local momentum distribution or
of the Fermi sphere. Overall, the deformation potential energy surface acquires a profile somewhat
similar to that of an uneven mountain, with little hills and valleys and covered by trees, and the evo-
lution of the nuclear shape is in the end similar to the erratic motion of a pinball, not straight down
the hill, but rather left and right, bouncing (mostly elastically) from the many obstacles on the way
to the bottom of the valley, where the pinball breaks up. At the last stages of this complex nuclear
shape evolution the independent character of the nucleons inside nuclei plays again a critical role,
magic closed shells control the nuclear shape evolution. As our simulations demonstrate[15], the
nucleus separates typically into two fission fragments, one bigger and the other somewhat smaller.
The larger fragment fragment has properties very similar to the energetically very stable double-
magic 132Sn, emerges with an almost spherical shape, while the lighter fragment at the scission
emerges into an elongated shape, with a ratio of the major to minor axes close to 3/2.

Overall the fission dynamics is a very complex process, which still did not reach a full micro-
scopic description [14], in spite of almost eight decades of effort. In contrast the superconductivity,
another remarkable quantum many-body phenomenon, required less than five decades to reach a
microscopic understanding. Several reasons prohibited so far the formulation of a microscopic
theory of fission (as opposed to phenomenological models), capable to produce results comparable
to observations without introducing uncontrollable approximations, parameter fitting, and based
on microscopic input. Two major relatively recent developments proved to be critical and created
the conditions for the formulation of a microscopic theory of fission. The first element was the
extension of the Density Functional Theory (DFT) to superfluid fermion systems, and extension
in the spirit of the Kohn and Sham [16] Local Density Approximation (LDA) from normal sys-
tems to superfluid systems [17, 18, 19], the Superfluid Local Density Approximation (SLDA). A
second major development was the mergence of powerful supercomputers capable of handling a
time-dependent DFT (TDDFT) approach to nuclear fission.

Since fission dynamics is a truly non-stationary phenomenon a further extension was needed
to its Time-Dependent version [19] and this approach was dubbed the Time-Dependent Superfluid
Local Density Approximation (TDSLDA). According to the theorem of Hohenberg and Kohn [20]
there is a one-to-one correspondence between the full ground state many-body wave function of
a fermion system and the one-body density matrix: Ψ(x1, . . . ,xN)↔ n(r), which directly leads
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to the fact that an energy density functional (EDF) exists: Egs = 〈Ψ[n]|H|Ψ[n]〉 ≡
∫

d3rε(r).
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240Pu fission with the normal pairing gap

Figure 2: Induced fission of 240Pu with normal pair-
ing strength last about 14,000 fm/c from saddle-to-scission.
The columns show sequential frames of the density (first
column), magnitude of the pairing field (second column),
and the phase of the pairing field (third column). In each
frame the upper/lower part of each frame shows the neu-
tron/proton density, the magnitude of neutron/proton pair-
ing fields, and of the phase of the pairing field respec-
tively [15]. At scission the heavy fragment is on the right
and emerges almost spherical, while the light fragment is
highly deformed with the ration of the axes ≈ 3/2.

The extension of these statements to
both excited states and time-dependent
phenomena has been performed for
quite some time now and many as-
pects are well documented in mono-
graphs [21, 22]. Unfortunately so far no
recipes have been produced on how to
generate the energy density functional
and only semi-phenomenological solu-
tions, quite accurate though, have been
suggested. For this reason many still in
the nuclear physics community are still
leveling an unwarranted criticism at the
DFT. DFT, similarly to the Schrödinger
equation in quantum mechanics, pro-
vides the theoretical framework within
which one has to attack a variety of
quantum many-body problems. In the
Schrödinger equation one has to pro-
vide the potential, which in most cases
we know only approximately, with var-
ious degrees of accuracy. The same is
true in the case of DFT, the energy den-
sity functional is known only with some
degree of accuracy. One would not stop
using the Schrödinger equation if one
would know the potential only approxi-
mately and instead would revert to some
alternative methods. What are the minimal requirements a nuclear EDF (NEDF) has to meet in or-
der to be used the fission dynamics within a TDDFT approach? Apart from the usual constraints
(translational and rotational invariance, Galilean invariance, isospin symmetry, parity,etc.) it has
to describe accurately the saturation properties on nuclear matter, have a correct surface tension
and accurate spin-orbit interaction, and accurate pairing properties. Saturation properties, surface
energy and Coulomb energy are needed to describe nuclear fission at the liquid drop model. The
spin-orbit interaction and accurate pairing energies are needed in order to describe correctly the
shell-corrections and the fact that the emerging heavy fission fragment in the fission of actinide has
properties very close to the double-magic 132Sn. Pairing correlations are also critical in order to
have an efficient mechanism to maintain the sphericity of the Fermi surface while the shape of the
mother nucleus evolves from a compact form up to scission. In the absence of an efficient mecha-
nism, which would redistribute the nucleon pairs at the level-crossings occurring at the Fermi level,
see Figure 1, a nucleus would fail to fission, unless excited to very large energies or elongated well
beyond the our fission barrier [9, 24, 25].
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An extension of the DFT to a TDDFT of superfluid systems requires the introduction of two
new order parameters: the anomalous densities and currents. Pairing interaction in nuclei is short-
ranged and that results in anomalous densities which converge very slowly with the upper cutoff
energy, which is of the order of 100 MeV. It can be shown that if the pairing potential is local the
anomalous density is actually divergent [17, 18]. Trying to eschew the presence of a divergent
anomalous density by using finite short-range interactions makes the TDDFT approach practically
impossible to implement in practice. An interaction such as the very successful Gogny interaction,
has an phenomenological short-range, not resulting from any microscopic input. Moreover, a fi-
nite range interaction will render the TDDFT equations into partial differential-integral equations,
which would require computations resources well beyond exascale computers. And last, but not
least, there is no fundamental reason why the DFT equations have to be non-local in space in the
case of nuclear interactions. It suffices to say that that was no need for non-local equations in the
case of the electronic systems, for which the Coulomb interaction has an infinite range. We have
used an NEDF based on the popular phenomenological SLy4 interaction [23], supplemented with
a very accurate pairing anomalous contribution [18].
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0 1 2 3 4

pairing gap (MeV)

−π −π/2 0 π/2 π

pairing phase

240Pu fission with a larger pairing gap

Figure 3: Induced fission of 240Pu with enhanced pairing
strength last about 1,400 fm/c from saddle-to-scission, thus
about ten times faster than in the case of normal pairing
strength.

The emerging TDSLDA equations
appear by design formally as TDHFB
equations with local meanfield and pair-
ing potentials. One has to remember
that unlike TDHF or TDHFB equations,
which are derived following specific ap-
proximations, the TDSLDA equations
have an exact theoretical structure, and
the only approximation is in the ac-
tual NEDF used, in our case a phe-
nomenological one. The SLy4 NEDF
provides quite an accurate description
of the saturation properties of nuclear
matter, of the surface properties of nu-
clei, and leads to a correct reproduc-
tion of the magic numbers, thus has a
reasonably accurate spin-orbit contribu-
tion to the NEDF. The pairing part of
the NEDF used by us is also quite ac-
curate [18]. The time-dependent equa-
tions of the TDSLDA are discretized on
a spatial lattice in a box large enough to
contain both the initial mother nucleus as well as the separated fission fragments immediately after
scission. The lattice constant corresponds to a momentum cutoff of ≈ 500 MeV/c, which is def-
initely large enough to describe accurately a large class of low-energy nuclear phenomena. Each
single particle wave functions has four components: un↑(r),un↓,vn↑(r),vn↓(r), where n runs over
proton and neutron quasiparticle states. The total number of partial differential equations varies,
depending on the size of the simulation box and the lattice constant, and runs from tens of thou-
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sands to hundreds of thousands. This very large number of coupled, non-linear time-dependent 3D
partial differential equations and the very large number of time-steps required to complete the full
evolution of the system explains why such a problem could not have been attacked numerically less
than a decade ago. We initialize the fission nucleus to a state very close to the outer fission barrier
and let the system evolve until scission. No restriction of any type are imposed on the dynamics and
at all times the meanfield and the pairing potentials are determined by the instantaneous nucleon
densities, and in this sense the dynamics is selfconsistent.

The most remarkable aspect of our work was that the chosen nucleus 240Pu, with an excitation
energy of about 8 MeV corresponding to the induced fission 239Pu(n,f) with a neutron with an
impinging kinetic energy of about 1.5 MeV reached the scission configuration and separated into
two unequal fragments, see Figure 2. The average atomic mass AL ≈ 105.3, neutron number NL ≈
63.5, and charge ZL ≈ 39.7 of the light fragment obtained in simulations compare surprisingly well
with the systematic data AS

L ≈ 100.6, NS
L ≈ 61, and ZS

L ≈ 39.7, particularly considering that no
effort or fitting was made. The light fragment emerges very deformed at scission, with the shape
of an axially symmetric ellipsoid with the ratio of the major to the minor axes close to 3/2. The
deformation energy of the light fission fragment is eventually converted into internal excitation
energy and as a result most of the excitation energy resides in the light fission fragment. the
total number of post-scission neutron emitted is estimated between 2-3 in reasonable agreement
with experiment. The total kinetic energy of the fission fragments we obtain is 181.6 MeV to be
compared with the value obtained from systematics 177.3 MeV. The time form the outer saddle-to-
scission is surprisingly very large, of the order of 10,000 fm/c, which is about an order of magnitude
larger that any previous estimate within various phenomenological models. The dynamics appears
superficially as over damped, but in reality the down-the-hill roll of the nucleus can be compared
with the motion of an electron in the Drude model of electric conduction. An electron collides with
various ions in the lattice and it is forced to move in transversal directions to the electric field, and
even though there is no dissipation, the total kinetic+potential energy of the "electron" is conserved
and at any "height" the magnitude of the velocity in the presence and in the absence of the "ions" is
the same, the actual length of the trajectory is significantly longer, which results in a much longer
time to reach the bottom. This is exactly what happens in the case of the evolution of a fissioning
nucleus while it rolls down from the outer saddle-to-scission. As there are no constraints on the
dynamics (as usually practitioners enforce in semi-microscopic and phenomenological models),
all collective degrees of freedom are allowed to participate. The fission fragments at the scission
configuration are rather cold, any excitation is present mostly in the collective (shape and pairing)
degrees of freedom, while the intrinsic nucleonic degrees of freedom follow essentially an adiabatic
evolution.

The deformation potential energy surface however is still full of local little hills and valleys,
arising from the partially avoided level crossing as a result of the pairing correlations. To demon-
strate how essential the role of the pairing correlations is in the fission dynamics, in spite of the
fact that in magnitude the contribute very little, we performed a fission study where we artificially
increased the strength of the pairing gaps, see Figure 3. The main result of this is that the magnitude
of the roughness of the deformation potential energy surface is greatly reduced and the deformation
potential energy surface is thus almost smooth. A nucleus now at the top of the barrier will start
rolling down the hill towards scission configuration straight down, without significant excursions
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sideways. The time from saddle-to-scission in this case is a factor ten smaller and almost identi-
cal to the time one would obtain in a fully hydrodynamic approach of an ideal nuclear fluid [26].
This results agrees with the known behavior of well developed superfluid systems, which at zero
temperature behave as ideal or perfect fluids. There is another remarkable difference between the
dynamics illustrated in Figures 2 and 3. While the evolution of the neutron and proton densities
appear superficially similar, the evolution of the pairing field is qualitatively different. In Figure
2 the paring field is seen to fluctuate quite a lot both in magnitude and in phase, a signature of
a not very well developed condensate. In Figure 3 however, prior to scission the pairing fields of
both neutrons and protons hardly fluctuate either in magnitude or phase, and as in stationary ground
states, the phase is essentially uniform throughout the entire nuclear system, which is a signature of
a well defined adiabatic evolution of the entire system. This is an example of the recently described
mechanism of phase-locking in the evolution of superfluid systems [27], when the strength of the
interaction leading to superfluidity (both in Fermi and Bose systems) exceeds a critical value. We
can thus conclude that the pairing interaction, in spite of being rather weak, plays a crucial role in
the nuclear large amplitude dynamics. In its absence a nuclear system would come to screeching
halt [24, 25], as in the presence of large static friction in classical systems.
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