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structure and reaction are presented. The decoupled one-dimensional collective paths are deter-
mined for pairing modes in Sn isotopes and for low-energy fusion reaction of 16O+16O. We show
that the collective path is often significantly different from our intuitive choice, such as the pair
gap and the relative coordinate between two nuclei.
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1. Introduction

Development of microscopic theories for large amplitude collective motion is a long-standing
problem in physics of nuclear structure and reaction [1]. It is natural to assume that the collective
motion is described by time evolution of a mean-field state (Slater determinant). This leads to a
semi-classical description of the collective motion. However, in experiments, nuclear collective
motion is usually identified by large transition probabilities and characteristic properties of energy
eigenstates. Thus, the classical dynamics of the mean-field state should be requantized.

In order to achieve the quantization, it is desirable to introduce a small number of canonical
collective variables which describe the collective motion of the mean-field state. In many cases,
these collective variables are assumed to be mean values of certain one-body operators intuitively
chosen. The choice is trivial for some cases, such as the center-of-mass motion of a nucleus. In
general, however, it is not at all easy to choose them. One of the main subjects of the present
paper is the microscopic determination of such one-body operators. More precisely speaking, we
self-consistently determine particle-hole and hole-particle parts of the operator, that is nothing but
generators of the collective variables [1]. These generators define the tangent space at every point
(mean-field state) in the collective subspace.

Another issue in the nuclear collective motion is the inertial mass. It is known that the sim-
plest generator-coordinate method (GCM) does not give a good description of the dynamics, and
its Gaussian overlap approximation (GOA) cannot produce a proper inertial mass [3]. A similar
problem is also present in the cranking formula [3] which has been most commonly used in many
applications [4, 5]. The problem is associated with improper treatment of the time-odd mean-field
effects. In contrast, the random-phase approximation (RPA), defined as the small-amplitude limit
of the time-dependent mean-field theory, properly takes into account the time-odd effects and is
able to reproduce the exact total mass for the center-of-mass motion. We provide an extension of
the RPA equation for non-equilibrium states, which is used for determination of the generators and
the inertial masses.

In section 2, we derive basic equations of our method. They are presented here in a different
form from references [1, 2], The formulation is based on the classical Hamilton’s equation, which
is given in reference [6] and similar to the one in reference [7]. We derive equations to determine
tangent vectors of the collective subspace, which are identical to the particle-hole (hole-particle)
components of the generators. In section 3, the method is applied to studies of nuclear pairing
dynamics and nuclear fusion reaction. The reaction path and inertial mass are self-consistently
determined. Finally, section 4 summarize the conclusion.

2. Adiabatic self-consistent collective coordinate method

We present derivation of the basic equations to determine a decoupled collective subspace
(path) and inertial mass. An extension of the present formalism can be found in reference [6].

2.1 Classical Hamiltonian

The time-dependent mean-field equation determines the time evolution of a Slater determinant
|ϕ(t)⟩. Using the Thouless’ theorem and a suitable mapping of coefficients [8], it can be written in
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terms of classical canonical variables {ξ α(t),πα(t)} as |ϕ(ξ ,π)⟩ where α = 1, · · · ,M. The number
of variables M corresponds to the number of independent particle-hole (two-quasiparticle) degrees
of freedom. The time-dependent mean-field equation can be written as the Hamilton’s equation of
motion; ξ̇ α = ∂H/∂πα and π̇α =−∂H/∂ξ α . Here the classical Hamiltonian is introduced as the
expectation value of the original Hamiltonian Ĥ

H(ξ ,π)≡ ⟨ϕ(t)|Ĥ|ϕ(t)⟩= ⟨ϕ(ξ ,π)|Ĥ|ϕ(ξ ,π)⟩. (2.1)

Assuming that the collective motion is slow, the Hamiltonian is expanded up to the second
order in momenta πα ;

H(ξ ,π) =V (ξ )+
1
2

Bαβ (ξ )παπβ , (2.2)

where the reciprocal inertial mass tensor is given by Bαβ (ξ )≡ ∂ 2H/∂πα∂πβ |π=0, and the Einstein
summation convention is adopted for upper and lower indexes.

2.2 Decoupled collective motion by point transformation

We now try to find a motion described by collective variables (q1, p1), well decoupled from
the rest of the degrees of freedom, {qa, pa}a=2,···,M. Here, we assume that the collective coordi-
nate is one-dimensional (1D). The point transformation, qµ(ξ ) with µ = 1, · · · ,M, leads to the
Hamiltonian H̄ as

H̄(q, p) = V̄ (q)+
1
2

B̄µν(q)pµ pν , (2.3)

where
V̄ (q) =V (ξ (q)), and B̄µν(q) = qµ

,αBαβ qν
,β . (2.4)

Here, the derivative is denoted by a comma such as qµ
,α ≡ ∂qµ/∂ξ α . If we restrict the transforma-

tion to the linear transformation, qµ
,α become constant. In general, they are position-dependent and

should be determined locally at each point in the collective space.
The decoupling subspace is defined by the condition that the system in the collective subspace

will stay within the subspace: qa = pa = 0 ⇒ q̇a = ṗa = 0 (a = 2, · · · ,M). Using the
Hamilton’s equation of motion, this condition can be written as the following [7].

(i) V̄,a = 0, (ii) B̄a1 = 0, (iii) B̄11
,a = 0, for a = 2, · · · ,M, (2.5)

in the collective subspace (qa = 0). If all the conditions (i-iii) of (2.5) are satisfied, the decoupling
is exact. In nuclear physics, the exact decoupling occurs only for the trivial center-of-mass motion.
We are interested in low-energy collective motion, (q1, p1), which is approximately decoupled from
other intrinsic degrees of freedom, {qa, pa}a=2,···,M. In the next subsection 2.3, we derive a set of
equations to determine the tangent vector q1

,α and its inverse ξ α
,1 , using the conditions of (2.5).

2.3 Basic equations

The condition (i) in (2.5) can be rewritten as

V,α −V̄,1q1
,α = 0, (2.6)
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which means that the gradient of potential V (ξ ) is parallel to the collective path q1. This can be
regarded as the minimization of V (ξ ) with a constraint on q1.

δ
{

V (ξ )−λq1(ξ )
}
= 0. (2.7)

We call equation (2.6) moving mean-field equation. For a given tangent vector q1
,α , the solution of

(2.6) determines a point in the collective space, namely, a Slater determinant |ϕ(ξ ,π = 0)⟩.
Next, we differentiate (2.6) with respect to q1.

(V,αβ −V̄,1q1
,αβ )ξ

β
,1 = V̄,11q1

,α (2.8)

Because of the condition (i), the left hand side can be written in terms of the covariant derivative as

V,αβ −V̄1q1
,αβ =V,αβ −V̄µqµ

,αβ =V,αβ −Γγ
αβV,γ ≡V;αβ ξ β

,1 , (2.9)

with the affine connection of Γγ
αβ = ξ γ

,µqµ
,αβ . This means that {qµ} is the normal (geodesic) coor-

dinates, namely Γ̄µ
νρ = 0. Equation (2.8) leads to

BαγV;γβ ξ β
,1 = BαγV̄,11q1

,γ = B̄11V̄,11ξ α
,1 , (2.10)

where we have used
Bαβ q1

,β = B̄11ξ α
,1 , (2.11)

which is equivalent to the decoupling condition (ii) in (2.5). Using the fact that both Bαβ and V;αβ
are tensors of the rank 2, we can also derive equations for left eigenvectors as

q1
,αBαγV;γβ = q1

,αξ α
,µ B̄µρV̄,ρνqν

,β = B̄1ρV̄,ρνqν
,β = B̄11V̄,1νqν

,β = B̄11V̄,11q1
,β , (2.12)

where we use the derivative of (i) with respect to q1 at the last equation. These equations (2.10)
and (2.12) are harmonic equations to determine the normal-mode vectors, generalized to non-
equilibrium states. At the equilibrium with V,α = 0, they become the conventional harmonic ap-
proximation with the eigenfrequency (B̄11V̄,11)

1/2.
The covariant derivative V;αβ requires the calculation of the affine connection that is given by

Γγ
αβ = ξ γ

,1q1
,αβ on the 1D collective subspace satisfying (2.6). To eliminate the awkward quantity

q1
,αβ , we differentiate the reciprocal collective inertial mass B̄11 with respect to ξ β . Using the

condition (iii) of (2.5), we obtain

B̄11
,1 q1

,β = Bαγ
,β q1

,αq1
,γ +2Bαγq1

,γq1
,αβ . (2.13)

Combining (2.10), (2.12), and (2.13), we end up with moving RPA equation:

M α
β q1

,α = ω2q1
,β , M α

β ξ β
,1 = ω2ξ α

,1 , (2.14)

where
M α

β ≡ BαγV,γβ +
1
2

Bαγ
,β V,γ , ω2 ≡ B̄11V̄,11 +

1
2

B̄11
,1 V̄,1. (2.15)

Equations (2.6) and (2.14) are our basic equations. These are identical to the adiabatic self-
consistent collective coordinate (ASCC) method proposed in reference [2]. In the ASCC formalism
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[1, 2], the equations are given by a variational form in terms of the generators of the collective vari-
ables, P̂(q) and Q̂(q), locally defined at each state on the subspace. They are composed of the
zeroth (p0), first (p1), and second-order (p2) equations in collective momentum p. The correspon-
dence between the present formulation and those in reference [1, 2] is identified by some relations,
such as

δ ⟨ϕ(q)|Q̂(q)|ϕ(q)⟩= δξ αq1
,α , δ ⟨ϕ(q)|P̂(q)|ϕ(q)⟩= δπαξ α

,1 . (2.16)

Then, we can easily find out that the p0, p1, and p2 equations of the ASCC exactly match with
(2.6), (2.11), and (2.13), respectively. For instance, using (2.16), equation (2.6) is rewritten as

δ ⟨ϕ(q)|Ĥ −λ Q̂(q)|ϕ(q)⟩= 0, (2.17)

that is identical to the p0 equation of the ASCC [1, 2].

3. Applications

In this section, we present our recent application of the ASCC method. Before presenting our
results, let us comment on the scaling of the collective coordinate and quantization.

The obtained 1D collective subspace is parameterized by the coordinate q1. Using a local scale
transformation (q1, p1) → (αq1, p1/(α +α ′q1)) with a function α(q1), the reciprocal collective
inertial mass for the scaled coordinate αq1 is given by B̄11(q1)× (α +α ′q1)2. Therefore, a proper
choice of the function α may lead to a constant inertial mass B̄11. The quantization of the collective
Hamiltonian, (2.3) with µ = ν = 1, is performed on this coordinate system, which is nothing but
the Pauli’s prescription.
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Figure 1: Neutron pair gap ∆ as a function of
the collective coordinate q1 for 112Sn. We set
B̄11 = 1 MeV to determine the scale of q1 (di-
mensionless).

In order to obtain an intuitive understand-
ing of the reaction dynamics, it may be conve-
nient to choose the new coordinate as the ex-
pectation value of a certain one-body operator
Q̂, such as the multipole moment, the relative
distance between colliding nuclei, etc. This is
equivalent to the scaling α = Q(q1)/q1 where
Q(q1) ≡ ⟨ϕ(q1)|Q̂|ϕ(q1)⟩. When the expectation
value Q(q1) becomes roughly constant as a func-
tion of q1, Q′ ≈ 0, we have B̄QQ ≈ 0, which means
a large inertial mass M(Q) = 1/B̄QQ. If the one-
to-one correspondence between q1 and Q(q1) is
lost, M(Q) diverges. Thus, the behavior of M(Q)

is a kind of indicator, how suitable the choice of
the one-body operator Q̂ is.

3.1 Collective motion associated with nuclear pairing

First, we apply the method to a nuclear structure problem. In the past, we studied collective
motion associated with the shape (quadrupole) degrees of freedom [1, 6]. In this paper, we present
our recent study on the collective motion associated with the pairing dynamics. Conventionally,
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the pair gap ∆ has been often regarded as a collective variable. A question is how suitable this
assumption is.

We adopt a simple monopole pairing model for Sn isotopes, Ĥ =∑l εl−g/4P̂†P̂, where P̂ is the
monopole pairing operator. Five spherical single-particle energies for {d5/2,g7/2,s1/2,d3/2,h11/2}
are included as εl (l = 1, · · · ,5) which are obtained with a standard Woods-Saxon potential. The
pairing force strength g is determined so as to reproduce the experimental neutron pair gap for
112Sn. Using the coherent-state representation, the mean-field (BCS) dynamics can be mapped into
the classical Hamiltonian (2.1) of 5D coordinates with {ξ 1, · · · ,ξ 5}. In this calculation, we start
from the ground BCS state ξ0, and solve the moving RPA equation (2.14) to obtain q1

,α and ξ α
,1 .

The reciprocal inertial mass is calculated as B̄11 = q1
,αBαβ q1

,β . Then, using a small step δq, we
move to the next point ξ α = ξ α

0 +δq×ξ α
,1 . Repeating this procedure, we obtain a series of points

in the five-dimensional space (ξ 1, · · · ,ξ 5), which compose the 1D collective path in the 5D space.

ASCC Exact
112Sn 2.61 2.80
114Sn 2.46 2.56
116Sn 2.58 2.61
118Sn 2.24 2.98
120Sn 2.89 2.77

Table 1: Calculated excitation
energies of excited 0+ states in
units of MeV, compared with ex-
act values.

Upon the obtained collective path for 112Sn, change of the
neutron pair gap ∆ is shown in figure 1. It is not monotonic,
which suggests that, adopting the energy gap ∆ as a collective
variable is not appropriate, since the one-to-one correspondence
between q1 and ∆ is lost. In fact, the inertial mass M(∆) would
diverges at q1 ≈ 0.3 where d∆/dq1 = 0.

Requantizing the 1D collective Hamiltonian, we obtain the
energies of excited 0+ states. They are shown in Table 1. The
original pairing Hamiltonian is known as the Richardson model
and exactly solvable. The results show reasonable agreement
with those of the collective Hamiltonian.

3.2 Subbarrier fusion reaction of 16O+16O

Fusion reaction at low energy involves a variety of shape degrees of freedom in addition to the
relative motion between two nuclei. Here we aim at microscopic determination of the reaction path
using the ASCC method.

We adopt the Bonche-Koonin-Negele (BKN) energy density functional [9] and three-dimensional
coordinate representation for single-particle orbitals. In order to solve the moving mean-field equa-
tion (2.6), we use the imaginary-time method. In this application, for simplicity, we neglect Bαγ

,β in
(2.15). This is equivalent to neglect of the curvature term q1

,αβ . Details of the method and numerical
calculation can be found in reference [10].

We start the calculation from the two well-separated 16O nuclei, to determine a series of so-
lutions {|ϕ(q1)⟩} which simultaneously satisfy (2.6) and (2.14). After determining the decoupled
path, we calculate V̄ (q1) and B̄11(q1) on that reaction path. In the left panel of figure 2, we show the
potential as a function of the quadrupole moment. The Coulomb barrier top is at around Q20 ≈ 1000
fm2. Beyond this point toward the collision, the potential decreases until the system reaches the
superdeformed local minimum in 32S, at Q20 ≈ 400 fm2. The superdeformed local minimum is
confirmed by the Q20-constrained mean-field calculation which is shown by the dashed line in
figure 2 (left). The identical superdeformed state is reached by both calculations. The potential
landscape turns out to be similar to the one obtained from the Q20-constraint calculation.
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Figure 2: (Left) Potential curve for 16O+16O scattering as a function of the quadrupole moment Q20. The
dashed line is the result of the mean-field calculation with Q20 as a constraint. The horizontal dotted line
indicates twice of the ground-state energy of 16O. (Right) Inertial mass for the relative distance R between
two 16O nuclei. The dotted line indicates the reduced mass µ = 8m.

The inertial mass M(R) for the relative distance R is shown in the right panel of figure 2. It
reproduces the exact reduced mass µ = 8m, where m is the nucleon mass, at the asymptotic region
(R → ∞). This means that the relative distance R is indeed proportional to the decoupled collective
variable q1 in the asymptotic region, q1

,α ∥ R,α .

Near the barrier top, the inertial mass M(R) starts to deviate from the reduced mass value
8m. As two 16O nuclei approach each other, M(R) increases and becomes close to 20m at the
superdeformed state. This suggests that the direction of the collective coordinate q1

,α becomes
significantly different from that of R. In fact, beyond the superdeformed minimum, the inertial
mass diverges, which indicates q1

,α ⊥ R,α . Thus, the relative distance no longer changes and the
system cannot reach the ground state of 32S.
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Figure 3: Calculated fusion cross section at sub-
barrier energies for 16O+16O. The dashed line
is obtained by replacing the R-dependent iner-
tial mass M(R) with the constant reduced mass
µ = 8m.

In the adiabatic time-dependent Hartree-
Fock theory, the collective path and the inertial
mass was obtained for the same system by Rein-
hard and collaborators [11]. Their inertial mass
behaves similar to ours in the region of R > 6 fm,
but their result indicates the decrease of the iner-
tial mass at R < 5.5 fm. The similar discrepancy
was previously found for the α +α system [10].

Adding the centrifugal potential V (l)
cen(R) =

h̄2l(l + 1)/(2µR2) to the obtained collective
Hamiltonian, we calculate the transmission co-
efficient Pl(E) for each partial wave l, using the
generalized WKB formula. The calculated fusion
cross section at subbarrier energy is shown in fig-
ure 3. Since M(R) is larger than the reduced mass
µ , the solid line is smaller than the dashed line.
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4. Summary

We presented the adiabatic self-consistent collective coordinate (ASCC) method and its appli-
cation to nuclear pairing dynamics in Sn isotopes and low-energy fusion reaction of 16O+16O. The
decoupled 1D collective paths were determined and quantized to obtain excitation energies and
subbarrier fusion cross section. The collective coordinate for the pairing collective motion cannot
be mapped onto the pair gap ∆ because there is no one-to-one correspondence. The collective mo-
tion for the fusion reaction asymptotically reduces to the relative motion between two nuclei, while
it is very different from the relative motion after two nuclei touch. This leads to a peculiar increase
of the inertial mass in the interior region.
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