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Deformation effects on the spin-isospin responses of nuclei, in particular, the Gamow-Teller
(GT) modes of excitation are investigated in a microscopic framework based on nuclear density-
functional theory. To describe the low-lying GT states and the GT giant resonance (GTGR) in
deformed neutron-rich nuclei, I employ the Skyrme energy-density functionals in the Hartree-
Fock-Bogoliubov calculation for the ground states and in the Quasiparticle Random-Phase Ap-
proximation for the excitations. It is found that the fragmentation of the strength distribution in the
low excitation-energy region has a strong impact on the β -decay properties, while the K−splitting
is small for the GTGR.
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1. Introduction

The study of unstable nuclei has been a major subject in nuclear physics for a couple of decades
thanks to the development of the rare-isotope beam technology. Collective mode of excitation
emerging in the response of the nucleus to an external field is a manifestation of the interaction and
correlation among nucleons. Thus, the isovevtor channel of the interaction or the energy-density
functional (EDF), which is crucial for understanding and predicting the properties of unstable nu-
clei and asymmetric nuclear matter, has been much studied through especially the Gamow-Teller
(GT) excitation besides the isovector dipole excitation [1, 2, 3, 4].

The GT strength distribution has been extensively investigated experimentally and theoreti-
cally not only because of interests in nuclear structure but also because β -decay half-lives set a
time scale of the rapid-neutron-capture process (r-process), and hence determine the production of
heavy elements in the universe [5]. The r-process path is far away from the stability line, and in-
volves neutron-rich nuclei. They are weakly bound and many of them are expected to be deformed
according to the systematic Skyrme-EDF calculations [6, 7].

Though the experimental study of the GT strength distribution in neutron-rich nuclei is yet
difficult, the progress has been made for the systematic measurement of the β -decay properties.
Recently, β -decay half-lives of neutron-rich nuclei with A ≃ 110 located on the boundary of the
r-process path were newly measured at RIKEN RIBF [8, 9]. The ground-state properties such as
deformation and superfluidity in neutron-rich Zr isotopes up to the drip line had been studied by
employing the Skyrme-HFB method, and it had been predicted that Zr isotopes around A = 110 are
well deformed in the ground states [10].

Spin-isospin responses of nuclei are described microscopically by the proton-neutron random-
phase approximation (pnRPA) or the proton-neutron quasiparticle-RPA (pnQRPA) including the
pairing correlations on top of the self-consistent Hartree-Fock (HF) or HF-Bogoliubov (HFB)
mean fields employing the nuclear EDF. There have been many attempts to investigate the charge-
exchange modes of excitation in stable and unstable nuclei [4]. These studies, however, are largely
restricted to spherical systems, and the collective modes in deformed nuclei remain mostly unex-
plored. Thus, in the present contribution, I investigate the GT modes of excitation in the neutron-
rich Zr isotopes as examples of the deformed neutron-rich nuclei. And then, the deformation effect
on the GT strength distribution and the β -decay half-lives are discussed.

2. Theoretical model

2.1 Microscopic framework for spin-isospin responses of deformed neutron-rich nuclei

To describe the nuclear deformation and the pairing correlations in the ground state, simul-
taneously, with a proper description of the weakly-bound nucleons, I solve the HFB equation in
coordinate space [11, 12](

hq(rσ)−λ q h̃q(rσ)

h̃q(rσ) −(hq(rσ)−λ q)

)(
φq

1,α(rσ)

φq
2,α(rσ)

)
= Eα

(
φq

1,α(rσ)

φq
2,α(rσ)

)
(2.1)

using cylindrical coordinates r = (ρ,z,ϕ). I assume axial and reflection symmetries to reduce
the computational resources. Here, the superscript q denotes ν (neutron, tz = 1/2) or π (proton,
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tz =−1/2). The mean-field Hamiltonian h is derived from the Skyrme EDF. The pairing field h̃ is
treated by using the density-dependent contact interaction,

vpair(rσ ,r′σ ′) =
1−Pσ

2
t ′0

[
1+

1
2

ρ(r)
ρ0

]
δ (r− r′), (2.2)

where ρ(r) denotes the isoscalar density, ρ0 = 0.16 fm−3, and Pσ the spin exchange operator.
Since I consider the even-even mother (target) nuclei only, the time-reversal symmetry is as-

sumed. A nucleon creation operator ψ̂†
q (rσ) at the position r with the intrinsic spin σ is then

written in terms of the quasiparticle (qp) wave functions as

ψ̂†
q (rσ) = ∑

α

[
φq

1,α(rσ̄)â†
α,q +φq∗

2,α(rσ)âα,q

]
. (2.3)

The notation φ(rσ̄) is defined by φ(rσ̄) =−2σφ(r−σ).
Using the quasiparticle basis obtained as a self-consistent solution of the HFB equations (2.1),

the pnQRPA equation is solved

[Ĥ ′, Ô†
i ]|0⟩= ωiÔ

†
i |0⟩, (2.4)

with Ĥ ′ = Ĥ −λν N̂ν −λπ N̂π . The charge-changing QRPA phonon operators are defined as

Ô†
i = ∑

αβ

[
X i

αβ â†
α,ν â†

β ,π −Y i
αβ âβ̄ ,π âᾱ,ν

]
, (2.5)

where âᾱ,q is a quasiparticle annihilation operator of the time-reversed state of α .
The GT± transition strengths to the state i with the z−component of angular momentum

K(K = 0,±1) are calculated as

B(GT±; i) =
g2

A
4π

|⟨i|F̂±
K |0⟩|2, (2.6)

⟨i|F̂±
K |0⟩= ∑

αβ

[
X i

αβ ⟨αβ |F̂±
K |HFB⟩−Y i

αβ ⟨αβ |F̂∓
K |HFB⟩

]
(2.7)

under the quasi-boson approximation. The HFB vacuum is denoted as |HFB⟩, and |αβ ⟩= â†
α,ν â†

β ,π |HFB⟩
is a 2qp excited state. The GT± operators are given by

F̂+
K = ∑

σσ ′

∫
drψ̂†

ν(rσ ′)⟨σ ′|σK |σ⟩ψ̂π(rσ), (2.8a)

F̂−
K = ∑

σσ ′

∫
drψ̂†

π(rσ ′)⟨σ ′|σK |σ⟩ψ̂ν(rσ). (2.8b)

The transition-strength distributions can be presented as functions of the excitation energy ET

with respect to ground state of the mother (target) nucleus

R±(ET ) = ∑
K

∑
i

γ/2
π

|⟨i|F̂±
K |0⟩|2

[ET −{ωi ± (λν −λπ)}]2 + γ2/4
. (2.9)
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2.2 Numerical details

I employ the SkM* [13] and SLy4 [14] EDFs for the mean-filed Hamiltonian and the residual
interaction in the p-h channel. The pairing strength parameter t ′0 is determined so as to approxi-
mately reproduce the experimental pairing gap of 120Sn (∆exp = 1.245 MeV).

The pairing field is generated by using the density-dependent contact interaction of Eq. (2.2).
The strength parameter for the T = 0 pairing interaction can be considered as a free parameter,
because it dose not affect the ground-state properties, and it is active only at the dynamic level.

Because of the assumption of the axially symmetric potential, the z−component of the qp an-
gular momentum, Ω, is a good quantum number. Assuming time-reversal symmetry and reflection
symmetry with respect to the x−y plane, we have only to solve Eq. (2.1) for positive Ω and positive
z. We use the lattice mesh size ∆ρ = ∆z = 0.6 fm and a box boundary condition at ρmax = 14.7
fm, zmax = 14.4 fm to discretize the continuum states. The differential operators are represented by
use of the 13-point formula of finite difference method. The quasiparticle energy cutoff is chosen
at Eqp,cut = 60 MeV and the quasiparticle states up to Ωπ = 31/2± are included.

We introduce an additional truncation for the pnQRPA calculation, in terms of the 2qp energy
as Eα +Eβ ≤ 60 MeV. This reduces the number of 2qp states to, for instance, about 30 000 for
the Kπ = 0+ excitation of the Zr isotopes. The number of 2qp states included in the calculation
is large enough to satisfy the Ikeda sum-rule values to an accuracy of 1%. The calculation of the
QRPA matrix elements in the qp basis, and diagonalization of the QRPA matrix are performed in
the parallel computers as in Ref. [15].

3. Results and discussion

First, I am going to discuss the roles of the neutron excess on the GTGR. One could expect the
enhancement in the GT− transition strengths according to the Ikeda sum rule:

S−−S+ = 3(N −Z), (3.1)

where S± is a sum of the GT± strengths, and the GT+ strengths are strongly suppressed due to
the Pauli effect. Furthermore, because of the imbalanced Fermi levels of neutrons and protons,
the number of “0h̄ω" 2qp excitation increases. One can thus expect a strong collectivity for the
GT− modes of excitation. Figure 1(a) shows the development of the collectivity of the GTGR
associated with the neutron excess. Plotted here is the mean energy difference of the GT− strength
distribution due to the residual interaction; ∆E = ĒQRPA− ĒHFB. The excitation energy Ē is defined
by the moment:

Ē =

∫
dE ′E ′R−(E ′)∫
dE ′R−(E ′)

. (3.2)

Both the SkM* and SLy4 interactions give a repulsive contribution to generation of the GTGR. Note
that the Laudau-Migdal parameter g′0 is 0.93 and 0.90 for the SkM* and SLy4 EDF, respectively.
As increasing the neutron excess, the GTGR is shifted more up in energy.

To see what is happening in the extreme case, I show in Fig. 1(b) the GT− strength distributions
in 140Zr. The nucleus 140Zr is considered to be located close to the drip line; the Fermi level of
neutrons is -0.10 MeV with SkM*. Without the residual interaction, indicated by the dashed line
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Figure 1: (a) Shift of the excitation energy of GTGR due to the residual interaction. See text for details. (b)
GT− strength (in unit of g2

A/4π) distributions of the drip-line nucleus 140Zr with and without the residual
interaction as functions of the excitation energy with respect to the ground state of the target nucleus.
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Figure 2: GT− strength (in unit of g2
A/4π) distributions of the 106Zr as functions of the excitation energy

ET . The SLy4 EDF is employed without the T = 0 pairing interaction. The strengths are smeared with γ = 2
MeV. The K = 0 and K = 1 strengths are denoted by the dotted and dashed lines. For the K = 1 strength, the
K =±1 components are summed up. (a) Strength distribution obtained assuming the nucleus spherical. (b)
Strength distribution for the prolately-deformed ground state.

in the figure, the strength distributions are fragmented in an energy region -10 − 0 MeV, and a
bump structure around -15 MeV is also seen. This means that many 2qp excitations are available
for constructing the GT− modes of excitation. When turing on the residual interaction, one sees
a prominent peak at 10 MeV. The GTGR in this nucleus collects almost all the strengths in a
narrow resonance. The mean energy difference associated with the residual interaction reaches
14.0 MeV, indicating a quite strong collectivity. In the light drip-nuclei such as 8He, the GTGR
appears below the ground state of the mother nucleus [17]. The strong collectivity in the heavy
systems, however, prevents the occurrence of the super-allowed GTGR even with a high asymmetry
α = (N −Z)/A = 0.43.

Next, I am going to discuss the deformation effects. Figure 2 shows the GT− strength dis-
tributions in 106Zr calculated employing the SLy4 EDF. The ground state is prolately deformed
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Figure 3: Partial decay rates in 106Zr with the SLy4 EDF. (a) Calculated with the T = 0 pairing interaction
on the prolately-deformed ground state. (b) Calculated without the T = 0 pairing interaction on the prolately-
deformed ground state. (c) Calculated without the T = 0 pairing interaction assuming the nucleus spherical.

in the calculation; β2 = 0.39. To see the roles of deformation, I show in Fig. 2(a) the strength
distribution obtained assuming the nucleus spherical. Namely, the HFB equation (2.1) was solved
with a constraint for the deformation β2 = 0. In both cases, one sees the GTGR around 12-16
MeV together with a bump around 5 MeV. Since the GT operator (2.8) carries the total angular
momentum J = 1, one has the K = 0 and ±1 components. For the spherical nuclei possessing the
rotational symmetry, the angular momentum is a good quantum number. So, the strengths of K = 0
and K =±1 components are the same, as seen in Fig. 2(a). For the deformed nuclei, such as 106Zr,
the angular momentum is no more a good quantum number. Thus, one sees a K-splitting for the
giant dipole resonance, for instance [3]. One can also see a K-splitting for the GT excitation as
shown in Fig. 2(b) though its splitting is tiny, in particular, for the GTGR peak.

In Fig. 2, one can see a distinct deformation effect: The low-lying strengths concentrated
around -6 MeV in Fig. 2(a) get spread over in Fig. 2(b). Since the β -decay rate is predominantly
governed by the low-lying GT states, it strongly affects the β -decay properties. In what follows, I
am going to discuss the deformation effect on the β -decay half-lives.

For the neutron-rich Zr isotopes around N = 66− 70, the β -decay half-lives were measured
experimentally [8, 9]. Figure 3 shows the partial decay rates of 106Zr obtained by employing the
SLy4 EDF. For the T = 0 pairing interaction, the density-independent contact force is employed for
simplicity. The strength of the paring interaction was determined so as to reproduce the measured
β -decay half-life of 100Zr (T1/2 = 7.1 s). For the axial-vector coupling constant, I used the effective
one; (gA)eff = 1.0.
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For the spherical configuration, one sees a state at ET =−5.5 MeV in Fig. 3(c), which appears
as a low-lying “resonance" in Fig. 2(a) due to the artificial smearing width. This prominent state
leads to a short half-life of 0.031 s. When considering the deformation, the state at -5.5 MeV gets
fragmented as shown in Fig. 3(b). The deformation-induced fragmentation reduces the decay rates
and the calculated half-life is 0.41 s. The low-lying GT states are sensitive to the detail of the shell
structure and the residual interactions. Figure 3(a) shows the partial decay rates calculated taking
into account the T = 0 pairing. One sees that the low-lying states are pushed down in energy due to
the attractive T = 0 pairing interaction, which enhances the β -decay rate; the calculated β -decay
half-life is 0.22 s. Note that the observed β -decay half-life is 0.186+0.011

−0.010 s. The prominent state at
ET ≃−6 MeV in Fig. 2(b) is mainly constructed by a ν [413]5/2⊗π[413]7/2 excitation satisfying
the selection rule:

|⟨π[Nn3Λ]Ω = Λ±1/2|t−σ±1|ν [Nn3Λ]Ω = Λ∓1/2⟩|=
√

2. (3.3)

The occupation probability of a ν [413]5/2 orbital is 0.31. Thus, this 2qp excitation is a p-p type
excitation, and is then strongly affected by the T = 0 pairing interaction.

4. Summary

I discussed the low-lying GT modes of excitation and GTGR in the neutron-rich Zr isotopes,
putting an emphasis on the roles played by the nuclear deformation. The deformation-induced
fragmentation of the strength distribution in the low excitation-energy region has a strong impact on
the β -decay properties, while the K−splitting is small for the GTGR. The attractive T = 0 pairing
interaction lowers the frequency of the low-lying GT mode and enhances the GT transition strength
when the 2qp excitation generating the low-lying mode satisfies the selection rule and is a p-p type
excitation. Therefore, the effect of T = 0 pairing is very sensitive to the shell structure around the
Fermi level. To reproduce the experimental data of β -decay half-lives, the fragmentation of the GT
strength distribution associated with the nuclear deformation is important together with the T = 0
pairing interaction. The nuclear EDF-based QRPA works better for the deformed systems than for
the spherical systems, where one needs to go beyond the RPA to obtain the fragmentation of the
strengths.
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