
P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management in large
scientific applications: A case study using a global
spectral model

Ramesh Naidu Laveti1

Center for Development of Advanced computing

C-DAC Knowledge Park, Byappanahalli, Bangalore, India
E-mail: rameshl@cdac.in

Compute and data intensive scientific applications demand compilers to allocate more
temporaries on the stack. For example, the change resolution component of a global spectral
model changes the resolution of the input files using Nearest Neighbour Interpolation which
requires large temporaries on the stack. Temporaries include sub-arrays, automatic arrays and,
sub-sections corresponding to actual arguments of a subroutine. If the infrastructure cannot
provide adequate stack space at runtime relative to the total size of the temporaries, then the
application program runs out of stack and aborts. Allocating the heap memory to store the large
temporaries introduced around 25% additional runtime because of allocation and deallocation of
the memory. This is observed in various components of a global spectral model.

We propose an automatic dynamic stack management framework which uses application profile
information and the information related to the required stack memory. It does not mandate any
hardware configuration changes. This technique manages stack frames on RAM by the
compiler-inserted code into the application binary. Our experiments with a global spectral model
show that we are able to obtain an average runtime savings of 21% along with a compile time
overhead of 4%. The actual gain depends on the size of the temporaries in an application and the
size of the RAM. Currently, it supports sequential and OpenMP applications. We further
enhance our framework to deal with the complex MPI and GPU programming paradigms.

International Symposium on Grids and Clouds 2016
13-18 March 2016
Academia Sinica, Taipei, Taiwan

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

1. Introduction

When an executable is loaded into memory, it is divided into mainly three segments: code
segment, stack segment and heap segment. In code segment, the compiled code itself will
reside. In any computer program, by default, local variables, automatic variables, non-initialized
and non-saved variables, non-allocated variables of a routine are stored in stack segment. Also,
whenever it is required the compiler will make a temporary copy of an array on the stack. This
is widely and conveniently used in many applications developed using FORTRAN, C and C++.
Most of the scientific applications are compute and data intensive, and demand compilers to
allocate large temporaries on the stack. For example, the change resolution component of a
global spectral model changes the resolution of the input files using Nearest Neighbor
Interpolation [1] requires large temporaries to perform its computations.

If the infrastructure cannot provide adequate stack space at run-time relative to the total
size of the temporaries, then it may cause several issues such as lack of access control to
temporaries, segmentation fault, allocation error, stack pointer error and corrupting other
segments such as the heap. The aforementioned issues make the program either error prone or it
can make the applications crash and abort. In general, large scientific applications such as
climate models are time-critical and sensitive towards the accuracy. A crash or corruption of
data leads to conduct the same experiments again after resolving the issues manually. Manual
intervention and resolving the stack overflow or data corruption issues by researchers wastes
several man hours. Some straightforward solutions were present to address this issue such as
directing the compiler to keep all the temporary arrays on to dynamically allocated heap
memory segment, or a user may try to adjust the process stack size for his particular application.
To store the data on the heap, we have to use dynamic memory allocation (DMA) methods.
DMA and fetching the data from the heap is slow when compared to stack. Therefore, it is often
desirable to handle the temporaries stored on stack memory dynamically without human
intervention at run time is a better solution.

The appearance of high-performance clusters with many-core processors allows large
scientific applications to run efficiently. To exploit the parallelism provided by HPC clusters, we
need to use shared memory programming paradigms or distribute programming paradigms, such
as OpenMP [2] or MPI [3] or a hybrid paradigm which combines OpenMP and MPI. The
applications developed using OpenMP or MPI involve many threads or processes. Hence thread
safety of the applications needs to be addressed. Temporaries cause no problems with traditional
MPI implementations since each process image contains a separate instance of the variable.
However, in the case of OpenMP, we need to maintain thread safety using a specific
privatization directive for the key variables. It leads to the creation of several numbers of copies
of private temporary variables which results in the usage of huge stack space. When the amount
of stack used by an execution thread exceeds an anticipated size, unexpected events happen. We
call this as “stack overflow” condition. Stack overflow is a major problem for many applications
and the existing standalone compile-time or run-time solutions are not always available or
appropriate for all the parallel applications. In some situations, we can prevent overflows from
occurring in the first place, which requires guesstimating the worst case stack space
requirements of an application prior to execution. This information can be incorporated into the
techniques used to address the stack overflow problems at run-time.

2

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

In this paper, we present a framework that automatically handles large temporaries via
compile and run-time techniques. Handling the problem in an automatic fashion relieves
programmers and researchers from the onerous and error-prone process of manually changing
their application code. Also, it allows the use of the same source code on different platforms
where distinct limits of stack sizes are available. In addition to these benefits, our techniques
can be uniformly applied to various programming paradigms that target multi-threaded
execution. We also present the advantages and disadvantages of our automatic stack handling
framework, and discuss the performance gain. We demonstrate the usefulness of these
techniques while running large scientific applications in a multi-threaded environment. In
addition, we show that this framework allows utilizing the stack space uniformly by all the
threads across processors to achieve better load balance.

The rest of this paper is organized as follows. Section 2 describes the parallel design and
the implementation details of the Global Spectral Models and their kernels (GSM). Section 3
describes in detail the problem posed by large temporaries and the importance of properly
handling it. In section 4, we present the techniques and framework we used to address the stack
memory problem. Section 5 contains our experimental performance results. Finally, Section 6
has conclusions and the future directions of our work.

2. Design and Implementation details of Global Spectral Model kernels (GSM)

The spectral method is a widely used numerical technique in which the prognostic field
variables are represented as a sum of a finite set of spectral modes rather than at grid points. The
spectral modes may be Fourier modes in case of 1-Dimensional fields or double Fourier modes
or spherical harmonics in the case of 2-Dimensional fields. Spectral methods are high order
methods which allow for either obtaining very accurate results or reducing the number of
degrees of freedom for a fixed standard accuracy. Climate modeling and weather forecasting
have long been application areas of spectral methods.

In a global spectral model, spectral transformation uses a combination of a Fourier
transform and a Legendre transform. The functions used in most global atmospheric spectral
models as the basis functions are spherical harmonics, a combination of sine and cosine
functions that represent the zonal structure and associated Legendre functions that represent the
meridional structure [4].

Numerical weather prediction or climate simulations must often meet stringent
computational efficiency as well as accuracy requirements. For many applications, global
spectral transform models can satisfy this pair of requirements [5]. However, these models
require a significant amount of memory and computational resources to generate forecast at a
high resolution. It is quite important to understand the stack usage patterns of these models to
conduct the forecast experiments. For dynamic stack management experiments, we choose two
climate model kernels: Helmholtz equation based uniform resolution spectral model kernel and
the change resolution component of an atmospheric general circulation model named Seasonal
Forecast Model (SFM) [6]. We discuss these models in the next subsection.

3

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

2.1 A spectral model kernel using Helmholtz equation

A global spectral model contains many dynamical processes. Each dynamical process
can be represented by a set of partial differential equations such as Helmholtz equation, which
should be solved accurately and efficiently. We have developed a spectral method based solver
for Helmholtz equation on a unit sphere with uniform forecast resolution on the globe. Here, the
uniform resolution grid means the number of latitudes taken on the grid is half of the number of
longitudes. The Helmholtz equation is second order non-linear partial differential equation. In a
two-dimensional case, it can be written as,

Where,  - Longitude, in the interval [0, 2Π] and µ - sin(Latitude), in the interval [- 1 , 1].

We solve this equation for the unknown variable 'U' from the known variable 'R'. The
discrete values of the function 'R' will be computed analytically at each point (, µ) and from
these values we can compute the spectral coefficients ‘Rmn’. Using spectral method, we can
obtain the spectral coefficients 'Umn' of the unknown parameter 'U'. The 'Umn' values will be
used to compute the discrete values of the unknown 'U'. In solving Helmholtz equation, we use
forward Fourier transform applied in the zonal (east-west) direction and the Gaussian quadrature
are evaluated in the meridional (north-south) direction. The forward Fourier transform is
computed at each circle of latitude using a discrete fast Fourier transform (FFT). It involves a
lot of computations as well as large temporaries.

2.2 Change resolution kernel of global spectral model - SFM

Seasonal Forecast Model (SFM) was developed by Experimental Climate Prediction
Center (ECPC), USA. SFM is an efficient, stable, state-of-the-art atmospheric general
circulation model designed for seasonal prediction and climate research. Change resolution
component is one of the important modules of SFM. This component is used to change the
resolution of the input files such as sigma and surface restart files from the global spectral
model. The input files should have header records identifying their respective resolutions.
Nearest neighbor interpolation is performed to transform the climate model's input conditions
from high resolution to low resolution or vice versa. Resolution is represented using spectral
truncation [4], the number of pressure levels, the number of longitudes and the number of
latitudes. This component requires the huge number of computations and large temporaries if we
want to convert the input data from very low resolution to very high resolution.

2.3 Design and implementation details of spectral models

The computational complexity of the spectral transform method is dominated by
Legendre Transformation, which requires the time complexity of O(n2). To increase the speed,
we have designed a parallel decomposition algorithm of spectral transformation. Initially, 1-D
decomposition method has been introduced, and performance metrics were captured. In this
method, decomposition is done in the Longitudinal direction. In 1-D decomposition, FFT
requires communication among all the processes or threads and the Legendre transformation can
be done without any communication among the processes or threads. However, it did not yield

4

∇
2 U ( , µ)−KU ( , µ)=R( , µ)

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

expected performance improvements. To increase the performance, we have introduced 2-D
decomposition method which does the decomposition of the data in the both Longitudinal and
Latitudinal directions. Fast Fourier Transformation requires all the arrays in the X-direction to
reside in one processor, but arrays in Y and Z directions can be separated into different
processors. Similarly, Fourier summation in the Y-direction requires that the entire array in Y-
direction must reside in one processor, but arrays in X and Z directions can be in separate
processors. The physical process calculations require all the variables at all levels for each grid
point, so that arrays in the Z-direction need to be in the same processor, but arrays in the X and
Y directions can be separated onto different processors. This array distribution requires the
entire arrays be rearranged into different configurations before the computational operations.
This transpose method is named as 2-Dimensional decomposition because one of the
dimensions is fixed but the other two are distributed. This decomposition gives flexibility in the
choice of the number of processors, it allows any number of processors.

The advent of powerful hardware technologies can employ a wide range of
programming paradigms such as OpenMP, MPI and OpenCL to harness the many levels of
architectural parallelism [7], including models to exploit parallelism in CPUs and GPUs. We
have developed Helmholtz equation based global spectral model using hybrid programming
model, OpenMP and MPI. The change resolution component of SFM was developed using pure
OpenMP.

3. Application program stack

In FORTRAN or C programming language, the stack—a region or a segment of
memory in which local variables are located and function arguments are passed—is allocated by
the programmer. The amount of memory allocated depends on several factors such as machine
architecture, OS, application design, and the amount of total memory available. If the program
requires more memory for its stack than the allocated memory then the stack overflows, without
warning in most cases. It can corrupt the memory areas of other programs and often results in a
crash or even a program malfunction. It is very difficult to trace back the stack overflow,
causing application developers to spend a significant amount of time and energy to find the
underlying cause of the problem that the application exhibits. As a result, they tend to allocate
more stack memory than required as a precaution.

The limitations of the stack memory are generally ignored by the developers as well as
the users. This is due to the assumption that stack data is volatile and it can be managed at the
run time very easily. However, we need to consider the significance of stack data, since
scientific applications such as global spectral models can have the significant amount of
memory references to stack data. These climate model kernels store large temporaries on the
stack and access the data allocated on stack very frequently. It is very common in these kernels
to increase the stack size and put more computation data on the stack, which leads to stack
overflow. Therefore, it is important to investigate the stack usage patterns because it helps us to
understand how these kernels use the memory objects on the stack and then we can consider a
better stack data placement. However, it may not be easy to find out the exact patterns of stack
data patterns in a multi-threaded or shared memory programming environment such as OpenMP
due to the following reasons.

5

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

• Automatic data placement in a shared memory space is non-trivial.

• Dynamically allocated memory such as heap memory is usually allocated via system
calls in Linux/UNIX like systems and dynamic stack space adaption is managed by the
OS kernel. Therefore, the application program or run-time libraries can not easily
distinguish underneath stack and heap management so that all stack and heap operations
are automatically performed under control of the OS Kernel.

• The traditional memory model of a sequential program can only trace a single heap and
a single stack within a single address space. So, conventional heap and stack
management techniques are unsuitable for shared or distributed parallel computations.

3.1 Stack inspection

In OpenMP, each thread may have drastically different stack size requirements. A thread
may cause the stack overflow if it tries to keep more data than the size of the stack. In the case
of OpenMP, the runtime library generates stack frames that are not part of the user code, which
could confuse users when finding out the reasons for stack overflow. The simple technique to
prevent the stack overflows is manual inspection of the stack segment and the stack pointers to
find out the possibilities of stack overflow. An example stack of a single thread is shown in
Figure 1.

We have investigated the application stack memory storage and access patterns of both
the climate model kernels as described in Section 2. In our study, We have included relevant
parameters such as stack size, stack pointer position, starting address of the stack, end of the
stack and the stack usage at a particular instance. The examining of these parameters is done
using GNU debugger (gdb). The stack frames of all the function calls in a thread are obtained
from the call stack. The call stack contains several stack frames, each frame corresponds to a
function call. We can obtain the complete information about a particular stack frame using
“gdb” commands.

Figure 1. Example thread stack and its sub-segments

6

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

Thread
ID

Stack Start Stack End Stack
Pointer

Stack Size
(Bytes)

Stack
Usage
(Bytes)

Category

0 0x1000 2000 0x1000 2255 0x1000 2121 1024 484 Normal

1 0x1000 3000 0x1000 3255 0x1000 3244 1024 976 Critical

2 0x1000 4000 0x1000 4255 0x1000 4148 1024 592 Normal

3 0x1000 5000 0x1000 5255 0x1000 5201 1024 804 Critical

Table 1: Sample Summary report of stack information of all the threads of an application

A wrapper was developed to consolidate the information about all the stack frames of an
application at a particular instant and obtain the summary report as shown in Table 1.
 We can obtain the summary report of the stack usage patterns of all the threads of our
global spectral models and inspect the stack space used and free space left for a thread. After
inspecting this information, we classify each thread stack state into two categories: Normal and
Critical. If the free space left in stack segment is more than 20% then we categorize it as
Normal. Otherwise, it is categorized as Critical. We can investigate all the threads during the
entire period of the application execution and observe the patterns. This helps us to identify the
threads which use more than 80% of the stack space allocated to it and address the stack
overflow problem manually. This stack checking is a good technique, but it does have some
shortcomings. One such shortcoming is that the stack overflow detection is still made by the
developer using the information produced by gdb. If the developer does not identify the
overflow, the problem may go unidentified. Also, there is no provision to abort/suspend the
application immediately when the overflow occurs. This is where automated dynamic run-time
stack management comes into play. The proposed framework is described in Section 4.

4. A framework for automatic dynamic stack management

The automatic dynamic stack management framework instruments stack data in two phases. In
the first phase, we use a static analysis tool which captures the stack information from the
executable. In the second phase, we use dynamic analysis tool which captures the stack usage
patterns at the run time.

4.1 Static Analysis

Static analysis tool analyzes and examines the program's executable file which is in Executable
and Linkable Format (ELF). This tool was built around the features provided by GNU C
compiler (gcc) and GNU FORTRAN compiler (gfort). These compilers provide us several stack
information options such as “-fstack-usage”, “fstack-check” and “-fcallgraph-info”. The
information obtained from the executable allows us to analyze the application stack space
consumption patterns. It is useful to obtain the possible worst case stack usage prior to
execution. It also provides the precise information about the possible maximum stack usage by
each thread. This method has a couple of advantages such as there is no run-time overhead and

7

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

not constrained by the target machine's hardware resources. However, it has several
disadvantages in which few are listed below.

• Finding unexpected function calls and jump instructions may affect the worst case stack
usage patterns of a program.

• Estimation of the number of control flow iterations may not be possible at compile time.
The worst case stack usage depends on the maximum possible control flow iterations,
which is unknown at compile time.

• Hardware interrupts and signals may also use the stack. It is difficult to get to know
whether they are using dedicated stack space or not.

To overcome the aforementioned problems, we have implemented a dynamic stack
analysis framework which will be used at the run time, we call it as the second phase. This will
use the information obtained from the first phase, i.e. static analysis tool and incorporates this
data into the framework at application's run time. Hence, this can be called as hybrid approach.

4.2 Dynamic Analysis

The proposed framework was mainly built using the following technique. First, we trace
the number of accesses, i.e. total number of read and write operations to the entire program
stack using the static analysis report. In particular, for each memory reference, we store the
position of the current stack pointer for each thread and also capture the memory reference
information. We also store the information about the maximum value that the stack pointer has
had during the execution of the program. We assume that the stack pointer grows downwards. If
the referenced memory address stays between the maximum stack pointer and the current stack
pointer then this memory reference is counted as a valid stack memory reference. However, this
information itself may not suffice to conclude about a valid stack reference. We need to analyze
the stack data at a finer granularity at the run time. To incorporate the finer granularity to
investigate a thread's stack, we need to obtain the information about each routine's stack frame
from the call stack. To implement this, we store the addresses of all function calls and the return
addresses. During the program execution, for each memory reference, the proposed framework
go through our call stack. It is always possible that the routine which is executing may access a
stack frame underneath the current routine’s frame. In this case, the memory reference is
attributed to the underneath stack frame. We use a technique called backtrace to get the details
of the. A backtrace is a list of the function calls that are currently active in a thread. The usual
way to inspect a backtrace of a program is to use an external debugger such as “gdb”. We obtain
the backtrace information programmatically by injecting small code snippets into the program at
compile time. This framework mainly relies on the following information.

• The information obtained from the selected stack frames of each thread.

• The information obtained from the backtraces: Information starting with the currently
executed frame, its caller and other frames up in the stack.

• Stack frame information such as: Address of the frame, the address of the next frame
down and up, the programming language used, the address of the frame's arguments,
address of the frame's local variables, the program counter and the register information.

• Application profile information using static analysis.

8

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

Figure 2. Automated dynamic stack management framework

This two-phase framework allows us to examine the stack of every thread during the
execution. It also gives us the facility to analyze the stack usage patterns of failed thread or
suspended threads of OpenMP applications. It keeps track of high stack usage for each thread,
which helps us to tune the stack size at the run time. To do this, it will keep a watermark which
represents the high stack usage by a thread. The address of this watermark to be subtracted from
the ending address of the stack to obtain the total amount of stack space used in a particular
instance. If an overflow condition occurs, it can identify and suspend all the threads related to it.
After that, it will try to move data which caused the overflow to the other threads which have
enough stack space to hold this data or it will try to migrate the data to the heap. The discussed
framework is depicted in Figure 2.

4.3 Limitations

The known limitations of the proposed framework are:

• It may fail in the case of tail call optimization because tail call optimization replaces one
stack frame with another; frame pointer elimination will stop backtrace from
interpreting the stack contents correctly.

• This framework may fail for inline functions.

• It works only on the systems which generate the executable in ELF format.

• It can only work with sequential and shared memory programming models (OpenMP).

5. Discussions and Results

This section presents the results of our experiments conducted using two applications:
Helmholtz solver based uniform resolution spectral model and global spectral model of SFM.
We have conducted the experiments using both the applications with various grid resolutions on
the sphere. As we increase the grid resolution, the size of the temporaries will increase
proportionally. The grid resolution is directly proportional to the amount of stack space required
to execute this application. We first captured the percentage of references to stack data out of

9

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

total memory references. For this application, the average percentage of stack data is around
40% if we fix the grid resolution as 300km x 300km. As we increase the grid resolution to 10km
x 10km, the stack data percentage increased significantly to 85% and model aborts due to stack
overflow. We further increased it to 1km x 1km which also caused stack overflow problem after
the completion of the 70% of the model execution. This experiment helped us to understand
how the dynamic stack management tool manages the stack overflow.

Initially, we tried using heap arrays to overcome the stack overflow error. It had
introduced around 25% more execution time in both the cases. Later, we have conducted the
same experiments on the same computational resources using the framework. It could manage
the stack overflow condition with an additional overhead of just 4% of the total execution time.
We also observed how the stack data size changes in time during the entire model execution.
The results are depicted in Table 2.

Model
Resolution

% of Stack
Space Used

Stack Tag Overhead due to
heap memory

Overhead due to
Dynamic stack

framework

300 km x 300 km 40.00% Normal -NA- -NA-

150 km x 150 km 58.50% Normal -NA- -NA-

50 km x 50 km 72.50% Normal -NA- -NA-

10 km x 10 km 85.00% Critical 25.00% 4.00%

1 km x 1km 98.00% Critical 25.00% 4.00%

Table 2: Stack memory access patterns and the comparison of overheads incurred by heap
arrays and dynamic stack management framework

The results proved that the proposed framework can handle large temporaries with a minimal
run time overhead and can tackle stack overflow problem efficiently.

6. Conclusions and Future work

We presented automatic dynamic stack management framework which uses application
memory access profile information at the run time and the information related to required stack
memory at the compile time. It helps us to handle stack overflow dynamically without
introducing much run time overheads. This manages stack frames on RAM by compiler-inserted
code into the application binary and handles the large temporaries without user's intervention.
Our experiments with a global spectral model show that we are able to obtain an average run-
time savings of 21% when compared to heap arrays as a solution to handle large temporaries of
global spectral model of SFM. We also noticed that it introduced around 4% of compile time
overhead which is very minimal. The actual gain depends on the size of the temporaries in an
application and the size of the RAM. Currently, it supports sequential and OpenMP applications.
We further enhance our framework to deal with the complex MPI and GPU programming
paradigms.

10

P
o
S
(
I
S
G
C

2
0
1
6
)
0
2
7

Automatic dynamic stack management of large scientific applications Ramesh Naidu Laveti

References

[1] Rukundo Olivier and Cao Hanqiang, Nearest Neighbour Value Interpolation, (IJACSA)
International Journal of Advanced Computer Science and Applications, Vol. 3, No. 4, 2012.

[2] The OpenMP® API specification for parallel programming: http://openmp.org/wp/, Accessed on
22nd February, 2016.

[3] The Message Passing Interface (MPI) standard: http://www.mcs.anl.gov/research/projects/mpi/,
Accessed on 22-02-2016.

[4] T. N. Krishnamurti, H. S. Bedi, V. M. Hardiker, An Introduction to Global Spectral Modeling.

[5] Charles T. Gordon and William F. Stern, A description of the GFDL global spectral model, Vol. 110,
No. 7, Monthly Weather Review, July 1982.

[6] The ECPC seasonal prediction system: http://ecpc.ucsd.edu/projects/G-RSM/docs/INT/ , Accessed
on 20th February, 2016.

[7] Jack Dongarra et al. The international exascale software project road map. International Journal of
High Performance Computing Applications, 25(1):3–60, February 2011.

11

http://ecpc.ucsd.edu/projects/G-RSM/docs/INT/
http://www.mcs.anl.gov/research/projects/mpi/
http://openmp.org/wp/

	1. Introduction
	2. Design and Implementation details of Global Spectral Model kernels (GSM)
	2.1 A spectral model kernel using Helmholtz equation
	2.2 Change resolution kernel of global spectral model - SFM
	2.3 Design and implementation details of spectral models

	3. Application program stack
	3.1 Stack inspection

	4. A framework for automatic dynamic stack management
	4.1 Static Analysis
	4.2 Dynamic Analysis
	4.3 Limitations

	5. Discussions and Results
	6. Conclusions and Future work

