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In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its
stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken
local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of
dark gauge theories. Compared with the usual phenomenological dark matter models (including
DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark
gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among
these fields are completely fixed by local gauge principle. The idea of singlet portals including
the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM
could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory
or simplified DM models without the full SM gauge symmetry, and emphasize the importance of
the full SM gauge symmetry and renormalizability especially for collider searches for DM.
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1. INTRODUCTION

The standard model (SM) has been tested from atomic scale up to ~ O(1) TeV scale by many
experiments, and has been extremely successful. However, there are some observational facts
which call for new physics beyond the SM (BSM): (i) baryon number asymmetry of the universe
(BAU), (ii) neutrino masses and mixings, (iii) nonbaryonic dark matter (DM) and (iv) inflation in
the early universe.

In this talk, I will concentrate on the issue of DM, assuming that BAU and neutrino masses and
mixings are accommodated by the standard seesaw mechanism by introducing heavy right-handed
(RH) neutrinos. For the inflation, I assume that the Higgs inflation is a kind of minimal setup, and
I show that the dark Higgs from hidden sectors can modify the standard Higgs inflation in a such a
way that a larger tensor-to-scalar ratio r ~ O(0.01 — 0.1) independent of precise values of the top
quark and the SM Higgs boson mass [13].

First of all, I discuss the basic assumption for DM models, emphasizing the role of dark gauge
symmetry, renormalizability, unitarity and limitation of DM effective field theory (EFT). Then I
give specific examples where (i) DM is absolutely stable due to unbroken dark gauge symmetry or
topological reason, and (ii) DM is long-lived due to accidental global symmetry of underlying dark
gauge symmetry. One of the common features of these models is the existence of a new neutral
scalar boson from dark sector, which I will call dark Higgs boson. I show that dark Higgs boson
can play a new key role in Hlggs inflation, EW vacuum stability, light mediator generating self-
interaction of DM, and explaining the galactic center y-ray execss. This talk is based on a series of
my works [1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19] with various collaborators.

2. Basic assumptions for DM models

2.1 Relevant questions for DM

So far the existence of DM was confirmed only through the astrophysical and cosmological
observations where only gravity play an important role. described by quantum field theory (QFT),
We have to seek for the answers to the following questions for better understanding of DM:

e How many species of DM are there in the universe ?

e What are their masses and spins ?

e Are they absolutely stable or very long-lived ?

e How do they interact among themselves and with the SM particles ?
o Where do their masses come from ?

In order to answer (some of) these questions, we have to observe its signals from colliders and/or
various (in)direct detection experiments.

The most unique and important property of DM (at least, to my mind) is that DM particle
should be absolutely stable or long-lived enough, similarly to the case of electron and proton in
the SM. Let us recall that electron stability is accounted for by electric charge conservation (which
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is exact), and this implies that there should be massless photon, associated with unbroken U (1)em
gauge symmetry. On the other hand, the longevity of proton is ascribed to the baryon number which
is an accidental global symmetry of the SM, broken only by dim-6 operators. We would like to
have DM models where DM is absolutely stable or long-lived enough by similar reasons to electron
and proton. And this special property of DM has to be realized in the fundamental Lagrangian for
DM in a proper way in QFT, similarly to QED and the SM. Local dark gauge symmetry will play
important roles, by gauranteeing the stability/longevity of DM, as well as determine dynamics in a
complete and mathematically consistent manner.

2.2 Hidden sector DM and local dark gauge symmetry

Any new physics models at the electroweak scale are strongly constrained by electroweak
precision test and CKM phenomenology, if new particles feel SM gauge interactions. The simplest
way to evade these two strong constraints is to assume a weak scale hidden sector which is made of
particles neutral under the SM gauge interaction. A hidden sector particle could be a good candidate
for nonbaryonic dark matter of the universe, if it is absolutely stable or long lived. Note that hidden
sectors are very generic in many BSMs, including SUSY models. The hidden sector matters may
have their own gauge interactions, which we call dark gauge interaction associated with local dark
gauge symmetry Ghigden- Lhey can be easily thermalized if there are suitable messengers between
the SM and the hidden sectors. We also assume all the singlet operators such as Higgs portal or
U (1) gauge kinetic mixing play the role of messengers.

Another motivation for local dark gauge symmetry Gpiqqen in the hidden sector is to stabilize
the weak scale DM particle by dark charge conservation laws, in the same way electron is absolutely
stable because it is the lightest charged particle and electric charge is absolutely conserved.

Finally note that all the observed particles in Nature feel some gauge interactions in addition
to gravity. Therefore it looks very natural to assume that dark matter of the universe (at least some
of the DM species) also feels some (new) gauge force, in addition to gravity.

2.3 EFT vs. Renormalizable theories

Effective field theory (EFT) approaches are often adopted for DM physics. For example, let
us consider a singlet fermion DM model in EFT:

. A _
LermionDM = v [l ﬁ — mq/] Y — %HTHII/W 2.1

with ad hoc discrete Z, symmetry under y — —y. However this could be erroneous for a number
of reasons.
Let us consider one of its UV completions [4]:

1 ‘ A
FLom = 5 (0SS —m3S?) — uis - %53 -2
A
+ Wi B —my)y —ASYY — uysSH H — %SzHTH. (2.2)
We have introduced a singlet scalar S in order to make the model (1) renormalizable. There will be
two scalar bosons H; and H, (mixtures of H and S) in our model, and the additional scalar S makes
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the DM phenomenology completely different from those from Eq. (1). This is also true for vector
DM models [6, 12].

For example, the direct detection experiments such as XENON100 and LUX exclude thermal
DM within the EFT model (1), but this is not true within the UV completion (2), because of generic
cancellation mechanism in the direct detection due to a generic destructive interference between
H, and H, contributions for fermion or vector DM [4, 6]. Also the direct detection cross section
in the UV completion is related with that in the EFT by [14]

m2 2
ol = o&FT (1 — ﬁ) cos*a (2.3)
1

which includes the cancellation mechanism and corrects the results reported by ATLAS and CMS
(see Fig. 1). Here m; is the mass of the singlet-like scalar boson and m s is the Higgs mass found
at the LHC. Note that the EFT result is recovered when o« — 0 and m; — .
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Figure 1: O'SI as a function of the mass of dark matter for SFDM (top) and VDM (bottom) for a mixing

angle o = 0.2. Left panel: my = 1072,1,10,50,70 GeV for solid lines from top to bottom. Right panel:
my = 100,200,500, 1000 GeV for dashed lines from bottom to top. The black dotted line is EFT predictions
presented by ATLAS and CMS [20, 21]. Dark-gray and gray region are the exclusion regions of LUX and
projected XENONIT (gray).

2.4 Dark Higgs mechanism for the vector DM and 7y-ray excess from the GC

One can also consider Higgs portal DM both in EFT and in a unitary and renormalizable model
[6], where dark Higgs is naturally introduced. It can be shown that one can accommodate the GeV-
scale y-ray excess from the GC very easily in terms of VDM annihilating into a pair of dark Higgs
[12]:VV — H,H,, followed by H, decays into the SM particles. This new mechanism is in fact
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very generic in hidden sector DM models with local dark gauge symmetries [15]. More details are
discussed in a talk by Yong Tang at this meeting [17]. Finally a recent study shows that the best
fit to the y-ray sepctra is obtained if Mpy =~ 95GeV, My, ~ 86.7 GeV and (ov) ~ 4 x 10~2°cm? /s
with a p-value = 0.40 [18]. Such a dark Higgs is very difficult to study at colliders, and indirect
signatures of DM could be a nice complementary.
The Higgs portal VDM model is usually described by
Anv

1 1
Amp = —ZVWV“V + Emévuv“ - Tvuvﬂ |H|> —

M

2 y4 (2.4)

with an ad hoc Z, symmetry, V;, — —V,,. Although all the operators are either dim-2 or dim-4, this
Lagrangian breaks gauge invariance, and is neither unitary nor renormalizable.

One can consider the renormalizable Higgs portal vector DM model by introducing a dark
Higgs & that generate nonzero mass for VDM by the usual Higgs mechanism:

2 2 2
(2.5)

Then the dark Higgs from ® mixes with the SM Higgs boson in a similar manner as in SFDM. And

1 v t 2 Vc21> 2 2 V%p 2 V%{
-i”VDMZ—ZXqu“ +(Dy®@) (D*®) =2 ( |P|" = 7 ) —Aom | |7 =5 ) [ |H =5,

there is a generic cancellation mechanism in the direct detection cross section. Therefore one can
have a wider range of VDM mass compatible with both thermal relic density and direct detection
cross section (see Ref. [6] for more details). In particular the dark Higgs can play an important role
in DM phenomenology.

Another important observable is the Higgs invisible decay width. The invisible Higgs decay
width in the EFT VDM model is given by

_ 2 2,3 A2 4 a2\ /2
(T )err = Mn Vit X( mv+12m‘2) ( mv) ‘ (2.6)

= 4 2 2
1287 my, my, nj, my,

Note that the invisible decay rate in the EFT becomes arbitrarily large as my — 0, which is not
physical. Let us compare this with the invisible Higgs decay in the renormalizable and unitary
Higgs portal VDM model, whcih is given by

12
pinv & m (1 _Amy 12”’%) ( _ 4’"5> . 2.7)
m

2 2 2
327 my m; ; m;

where my is the mass of VDM. In this case my = gxve so that the invisible decay width does not
blow up when my — 0, unlike the EFT VDM case. This is another example demonstrating the
limitation of the EFT calculation.

Having the dark Higgs can be very important in DM phenomenology. Let me demonstrate
it in the context of the GeV scale y-ray excess from the galactic center (GC). In the Higgs portal
VDM with dark Higgs, one can have a new channel for y-rays: namely, VV — H,H, followed by
H, — bb,T7T through a small mixing between the SM Higgs and the dark Higgs. As long as V is
slightly heavier than H, with my ~ 80GeV, one can reproduce the y-ray spectrum similar to the one
obtained from VV — bb with my ~ 40GeV (see Fig. 2 and Ref. [12] for more detail). Note that this
mass range for VDM was not allowed within the EFT approach based on Eq. (4), where there is
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no room for the dark Higgs at all. It would have been simply impossible to accommodate the y-ray
excess from the galactic center within the Higgs portal VDM within EFT. Also this mechanism is
generically possible in hidden sector DM models [15].

¥ spectrum
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Figure 2: Illustration of y spectra from different channels. The first two cases give almost the same

3. Stable DM with unbroken dark gauge symmetries

3.1 Local Z, scalar case

In order to highlight the idea of local dark gauge symmetry, let us consider a scalar DM § with
Higgs portal with discrete Z, symmetry (S — —S):
1
2
This model is the simplest DM model in terms of the number of new degrees of freedom beyond
the SM, and its phenomenology has been studied comprehensively. However the origin and the

nature of Z, symmetry has not been specified at all in the literature.
If this Z, symmetry is global, it could be broken by gravitation effect with Z,-breaking dim-5

@yfuzsz A 3.1)

mis” == 4

1
o%scala.rDM = Ea‘usaus_

operator:

A -
F'u’vF“V 5 QLHdR 9 etc. (3.2)

MPlanck Planck
Then the decay rate of S due to these Z,-breaking dim-5 operators is given by

12m3 m 3
0(S) ~ s~ 22 () 1077 Gev 33
( ) }2’lanck 100 GeV ( )

Therefore EW scale CDM § will decay very fast and cannot be a good CDM candidate, unless the
coefficient of this dim-5 operator is less than 1078, This is one possibility, but another possibility is
to implement the global Z, symmetry as an unbroken subgroup of some local dark gauge symmetry.
In fact, one can construct local Z, model, by assuming that a DM X and a dark Higgs ¢x
carry U(1)x-charges equal to 1 and 2, respectively. The renormalizable Lagrangian of this model
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is given by [16]

Iy owr 1. o 4
L = L= Xy R = = sineXuy B + Dy ox DM g + DX DX — (qu); +H.c.)

V2 2
— mx|X|* = Ax|X|* = A <\¢x|2— ;) — Xox| X110 1> — Agnr| Ox |2 [H|* — x| X|*|H|E3.4)

which is much more complicated than the original Z, scalar DM model, Eq. (4). After U(1)x
symmetry breaking by nonzero (¢x) = vy, there still remains a Z, symmetry, X — —X, which
guarantees the scalar DM to be absolutely stable even if we consider higher dimensional operators.
The U(1)x breaking also lifts the degeneracy between the real and the imaginary parts of X, Xg
and X; respectively. Compared with the global Z, scalar DM model described by Eq. (4), the
local Z, model has three more fields: dark photon 7, dark Higgs ¢y and the excited scalar DM
Xg, assuming Xj is lighter than Xg. Then the DM phenomenology would be muvh richer than the
global Z, scalar DM model. For example, one can consider X;X; — ¢x@x followed by ¢x decay
into the SM particles through the small mixing between dark Higgs ¢x and the SM Higgs boson #,
as a possible explanation of the galactic center y-ray excess (see Ref. [16] for more detail).

3.2 Local Z; scalar DM model

Let us assume the dark sector has a local U(1)x gauge symmetry spontaneously broken into
local Z3 4 la Krauss and Wilczek. This can be achieved with two complex scalar fields ¢y and X
in the dark sector with the U(1)x charges equal to 1 and 1/3, respectively [10, 15]. Here ¢y is
the dark Higgs that breaks U(1)x into its Z3 subgroup by nonzero VEV. Then one can write down
renormalizable Lagrangian for the SM fields and the dark sector fields, Xw ¢Ox and X:

T w1 o
L = Lo — ZXWXW — 5 sin eXyB"Y + Dy ¢S D oy + DX TDEX —V(H X, ¢0x) (3.5
Vo= —pglH* + Au [ H H[* = p31ox > + Aol dx|* + 1z X P + Ax X |* + Agm |0x [*[H|?

+ Aox [X[210x 2+ A | X P HP + (Agxw; +H.c.) (3.6)

where the covariant derivative associated with the gauge field X* is defined as Dy, = dy, —igx QXX“.
We are interested in the phase with the following vacuum expectation values for the scalar
fields in the model:

_ 1[0 _ Y xy—
<H>_ (Vh)7<¢x>_\ﬁ7 <X>_07 3.7

where only H and ¢x have non-zero vacuum expectation values(vev). This vacuum will break
electroweak symmetry into U (1)en, and U(1)x symmetry into local Z3, which stabilizes the scalar
field X and make it DM. The discrete gauge Z3 symmetry stabilizes the scalar DM even if we
consider higher dimensional nonrenormalizable operators which are invariant under U(1)x. This
is in sharp constrast with the global Zz model considered in Ref. [22]. Also the particle contents
in local and global Z3 models are different so that the resulting DM phenomenology are distinctly
different from each other, as summarized in Table 1.
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In Fig. 3, I show the Feynman diagrams relevant for thermal relic density of local Z3 DM X.
If we worked in global Z3 DM model instead, we would have diagrams only with H; in (1),(b) and
(c). For local Z3 model, there are two more new fields, dark Higgs H> and dark photon Z , which
can make the phenomenology of local Zz case completely difference from that of global Zs case.
In fact, this can be observed immediately in Fig. 4, where the open circles are allowed points in
global Z3 model, whereas the triangles are allowed in local Z3 case. The main difference is that
in global Zs case, the same Higgs portal coupling Azx enters both thermal relic density and direct
detections. And the stringent constraint from direct detection forbids the region for DM below 120
GeV. On the other hand this no longer true in local Z3 case, and there are more options to satisfy
all the constraints [10, 15].

N //7 X—')——r—f—j
Xq ¥ X ! X
N ,
- A
X” \\ Hl/Hz X | Hl/Hz X
, N _——_ - - -
’ (a) A (b)
N . Rt
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— - +
4 e A
s - — 3 -

(e) (f)
Figure 3: Feynman diagrams for dark matter semi-annihilation. Only (a), (b), and (c) with H; as final state

appear in the global Z3 model, while all diagrams could contribute in local Z3 model.
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Figure 4: Illustration of discrimination between global and local Z3 symmetry. We have chosen My, =
20GeV, My = 1TeV and A3 < 0.02 as an example. Colors in the scatterred triangles and circles indicate
the relative contribution of semi-annihilation, r defined in Eq. (9). The curved blue band, together with the
cirles, gives correct relic density of X in the global Z3 model. And the colored triangles appears only in the
local Z3 model.

We may define the fraction of the contribution from the semi-annihilation in terms of

1 vGXX—>X*Y

2 yo XX =YY | %VGXX%X*Y ’

r (3.8)
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H Global Z3 ‘ Local Z3 ‘
Extra fields X X.Z.¢
Mediators H H, 7 , 0

Constraints || Direct detection Can be relaxed
Vacuum stability | Can be relaxed
DM mass myx 2 120GeV | myx < mpy allowed

Table 1: Comparison between the global and the local Z3 scalar dark matter models. Here X is a complex
scalar DM, H is the observed SM-HIggs like boson, and ¢ is the dark Higgs from U(1)x breaking into Z3
subgroup.

Also one can drive the low energy EFT and discuss its limitation, the details of which can be
found in Ref. [10]. The main message is that the EFT cannot enjoy the advantages of having the
full particles spectra in the gauge theories, namely not-so-heavy dark Higgs and dark gauge bosons,
which could be otherwise helpful for explaining the galactic center y-ray excess or the strong self-
interacting DM. And it is important to know what symmetry stabilizes the DM particles.

3.3 Other possibilities

Sterile neutrinos including the RH neutrinos are natural candidates for hidden sector fermions
with dark gauge charges. In fact there have been some attempt to construct models for CDM
interacting with sterile neutrinos in order to solve the some puzzles in the standard CDM paradigm
as well as to reconcile the amount of dark radiation reported by Planck observation and the sterile
neutrino masses and mixings that fit the neutrino oscillation data [11]. One can also consider
unbroken U (1)y dark gauge symmetry with scalar DM and the RH neutrinos decay both to the SM
and the dark sector particles [7].

4. Stable DM due to topology: Hidden sector monopole and vector DM, dark
radiation

In field theory there could be a topologically stable classical configuration. The most renowned
example is the "t Hooft-Polyakov monopole. This object in fact puts a serious problem in cosmol-
ogy, and was one of the motivations for inflationary paradigm. In Ref. [9], we revived this noble
idea by putting the monopole in the hidden sector and introducing the Higgs portal interaction to
connect the hidden and the visible sectors.

Let us consider SO(3)x-triplet real scalar field @ with the following Lagrangian implemented
to the SM:

Ao Aon

1 1 - — - = 2 > - . 2
Trow = =7 ViV 45D, ®- DD -2 (6.8 —1]) — 2 (3.5} <H'H—VH>.

4" my 2 2
(4.1)
The Higgs portal interaction is described by the Agy term, which is a new addition to the renowned
’t Hooft-Polyakov monopole model.
After the spontaneous symmetry breaking of SO(3)x into SO(2)x(~ U(1)x) by nonzero vac-
uum expectation value (VEV) of ® with (®(x)) = (0,0, ve), hidden sector particles are composed
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of massive dark vector bosons Vui ! with masses my = gxve (which are stable due to the unbroken
subgroup SO(2)x ~ U(1)x), massless dark photon 7, = Vﬁ’, topologically stable heavy (anti-
ymonopole with mass my ~ my /o, and massive real scalar ¢ (dark Higgs boson) mixed with the
SM Higgs boson through the Higgs portal term.

Note that there is no kinetic mixing between 7y, and the SM U (1)y-gauge boson unlike the
U (1)x-only case, due to the non Abelian nature of the hidden gauge symmetry. Also the VDM is
stable even in the presence of nonrenormalizable operators due to the unbroken subgroup U (1)y.
This would not have been the case, if the SU(2)x were completely broken by a complex SU (2)x
doublet, where the stability of massive VDM is not protected by SU(2)x gauge symmetry and
nonrenormalizable interactions would make the VDM decay in general [23]. Of course, it would
be fine as long as the lifetime of the decaying VDM is long enough so that it can still be a good
CDM candidate. In the VDM model with a hidden sector monopole, the unbroken U (1)x subgroup
not only protects the stability of VDM V., but also contributes to the dark radiation at the level of
~ (.1. We refer the readers to the original paper on more details of phenomenology of this model

[9].

5. EWSB and CDM from Strongly Interacting Hidden Sector:
long-lived DM due to accidental symmetries

Another nicety of models with hidden sector is that one can construct a model where all the
mass scales of the SM particles and DM are generated by dimensional transmutation in the hidden
sector [1, 2, 3]. Basically the light hadron masses such as proton or p meson come from confine-
ment, which is derived from massless QCD through dimensional transmutation. One can ask if all
the masses of observed particles can be generated by quantum mechanics, in a similar manner with
the proton mass in the massless QCD. The most common way to address this question is to employ
the Coleman-Weinberg mechanism for radiative symmetry breaking. Here I present a new model
based on nonperturbative dynamics like technicolor or chiral symmetry breaking in ordinary QCD.

Let us consider a scale-invariant extension of the SM with a strongly interacting hidden sector:

)LH )LS H A'S

L = Lsmkin T LM, Yukawa — T(HTH)2 - S’H'H — ZSA'
1 a a 5 .
- 1909 W Y Gi[iD-y— NS 2 (5.1)

k=Tof

Here 2 and %ﬁv are the hidden sector quarks and gluons, and and the index k is the flavor index
in the hidden sector QCD. In this model, we have assumed that the hidden sector strong interaction
is vectorlike and confining like the ordinary QCD. Then we can use the known aspects of QCD
dynamics to the hidden sector QCD.

Note that the real singlet scalar S plays the role of messenger connecting the SM Higgs sector
and the hidden sector quarks.

In this model, dimensional transmutation in the hidden sector will generate the hidden QCD
scale and chiral symmetry breaking with developing nonzero {2;2;). Once a nonzero {2;2;) is

'Here £1 in V/f indicate the dark charge under U(1)x, and not ordinary electric charges.

10
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developed, the A4S term generate the linear potential for the real singlet S, leading to nonzero (S).
This in turn generates the hidden sector current quark masses through A; terms as well as the EWSB
through Agy term. Then the Nambu-Goldstone boson 7, will get nonzero masses, and becomes a
good CDM candidate. Also hidden sector baryons %, will be formed, the lightest of which would
be long lived due to the accidental h-baryon conservation. See Ref. [3] for more details.

6. Light mediators and Self-interacting DM

Another nice feature of the dark matter models with local dark gauge symmetry is that the
model includes new degrees of freedom, dark gauge bosons and dark Higgs boson(s), that can
play the role of force mediators from the beginning because of the rigid structure of the underlying
gauge theories. In fact one can utilize the light mediators in order to explain the GeV scale y-ray
excess or the self-interacting DM which would solve three puzzles in the CDM paradigm: (i) core-
cusp problem, (ii) missing satellite problem and (iii) too-big-to-fail problem. These would have
been simply impossible if we adopted the EFT approach for DM physics.

In the EFT approach for the DM, these new degrees of freedom are very heavy compared with
the DM mass as well as the energy scale we are probing the dark sector (e.g., the collider energy
scale). However, we don’t know anything about the mass scales of these mediators, and it would
be too strong an assumption. Without these light mediators, we could not explain the GeV scale
Y-ray excess as described in this talk, or have strong self-interacting DM. This illustrates one of the
limitations of DM EFT appraoches.

7. Higgs inflation assisted by the Higgs portal

The final issue related with DM models with local dark gauge symmetris is the Higgs inflation
in the presence of the Higgs portal interaction to the dark sector:

< 1 <1+§hz>R+.§f + Aor 0°h? (7.1)
/g 2« M2, hr e ‘

in the unitary gauge, where k = 871G =1/ Mgl with Mp; being the reduced Planck mass, and .7, is
the Lagrangian of the SM Higgs field only. Here ¢ denotes a generic dark Higgs field which mixes
with the SM Higgs field after dark and EW gauge symmetry breaking.

In the presence of the Higgs portal interaction, we have recalculated the slow-roll parameters.
Relegating the details to Ref. [13], I simply show the results: at a bench mark point for Fig. 2 of
Ref. [13], we get the following results:

ng =0.9647 , r =0.0840 , (7.2)

for N, = 56, h,/Mp; = 0.72, a = 0.07422199 and & = 12.8294 for a pivot scale k, = 0.05Mpc .
There is a parameter space where the spectral running of n, is small enough at the level of |n;\ <
0.01. It is amusing to notice that the r could be as large as ~ O(0.1) in the presence of the Higgs
portal interactions to a dark sector, independent of the top quark and the Higgs boson mass in the
standard Higgs inflation scenario.

11
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8. Higgs phenomenology, EW vacuum stability, and dark radiation

Now let us discuss Higgs phenomenology within this class of DM models. Due to the mixing
effect between the dark Higgs and the SM Higgs bosons, the signal strengths of the observed Higgs
boson will be universally reduced from ”1” independent of production and decay channels [4,
6]. Also the 125 GeV Higgs boson could decay into a pair of dark Higgs and/or a pair of dark
gauge boson, which is still allowed by the current LHC data [8]. These predictions will be further
constrained by the next round experiments.

Also the dark Higgs can make the EW vacuum stable upto the Planck scale without any other
new physics [5, 6], and this was very important in the Higgs-portal assisted Higgs inflation dis-
cussed in the previous section.

In most cases, there is generically a singlet scalar which is nothing but a dark Higgs, which
would give a new motivation to consider singlet extensions of the SM. Traditionally a singlet scalar
was motivated mainly by why-not or Ap constraint, or the strong first order EW phase transition for
electroweak baryogenesis. Being a singlet scalar, the dark Higgs will satisfy all these motivations,
as well as stability of DM by local dark gauge symmetry. It would be important to seek for this
singlet-like scalar at the LHC or the ILC, but the colliders cannot cover the entire mixing angle
down to & ~ 1078 (for MeV dark Higgs) relevant to DM phenomenology.

Massless dark gauge boson or light dark fermions in hidden sectors could contribute to dark
radiation of the universe In a class of models we constructed, the amount of extra dark radiation is
rather small by an amount consistent with the Planck data due to Higgs portal interactions [7,9, 11].

9. Collider Search for Dark Higgs: Beyond the DM EFT and simplified models

Finally let us discuss the collider search for the dark Higgs boson and DM particles. A classic
signature for DM search would be mono X + missing Er. Early this year ATLAS and CMS reported
such studies in the monojet + missing E7 and #f + missing Er, respectively. Their analyses are based
on the simplified model without the full SM gauge symmetry, which is neither renormalizable nor
unitary.

Let us consider a scalar x scalar operator describing the direct detection of DM on nucleon,
assuming the DM is a Dirac fermion ) with some conserved quantum number stabilizing :

Lss = A%qqu or %qug_(x. 9.1)
dd dd

Assuming the complementarity among direct detection, collider search and indirect detection (or

thermal relic density), the bound on the scale A, of this operator has been studied extensively in

literature [19].

However, the above operator does not respect the full SM gauge symmetry and thus is not
suitable for studying phenomenology at high energy scale (say, at electroweak scale). Therefore the
operator form has to be mended. Note that the SM quark bilinear part in the above operator can be
written into Q; Hdg or @Lﬁ ug, if we impose the full SM gauge symmetry. Here Q; = (uy,dp)”.
Likewise, the singlet fermion ) cannot have renormalizable couplings to the SM Higgs boson,
since ¥ is a singlet whereas the Higgs field is a doublet. Similarly, the quark bilinear ggq does not

have renormalizable couplings to a singlet scalar field S.
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The simplest way to write down a renormalizable operator that is invariant under the full SM
gauge group is to introduce a real signet scalar field S [4, 6] and induce an operator sy ) X hgq —
mig X xdq by integrating out the real scalar s. However there is always a mixing between the SM
Higgs h and the real singlet scalar s, which results in two physical neutral scalars H; and H, with
the mixing angle a. Therefore one should take into account the exchange of both H; and H, for DM
direct detection scattering [4]. Note that there is a generic cancellation between two contributions
from two neutral scalars, which cannot be seen within EFT approach [4, 6].

Let us consider the Higgs portal fermion DM model as an example. The simplest UV com-
pletion is given by Eq. (2.2), and one can calculate the g — yq scattering amplitude therein: The
interaction Lagrangian of H; and H, with the SM fields and DM Y is given by

_ 2 2 2
Lt =—(Hycoso+H,sina) [ZZfo—ZZ)VWJW‘“_ZZZMZ“ +A(H sina—Hycoso) X x ,
f

9.2)
following the convention of Ref. [4]. We identify the observed 125 GeV scalar boson as H;. The
mixing between £ and s leads to the universal suppression of the Higgs signal strengths at the LHC,
independent of production and decay channels [4].

Let us start with the DM-nucleon scattering amplitude at parton level, x(p) +q(k) — x(p') +
q(k'), the parton level amplitude of which is given by

_ — m 1 1
M = —u(pu(p)u(ku(k) —L A sin cccos o — 9.3
(P yulp)ulk Julk) VH [t—m,zil—i—imHlFH1 t—m%,2+imH2FH2]( )
/ 7 mny : 1 1 _ "y ! /
— u(p"u(p)u(k")u(k) 5 Asin2a | —— ——— | = —-u(p )u(p)u(k)u(k), (9.4)
VH mH] mHz Add

where t = (p’ — p)? is the square of the 4-momentum transfer to the nucleon, and we took the
limit # — O in the second line, which is a good approximation to the DM-nucleon scattering. The
scale of the dim-7 effective operator, m, gq X X, describing the direct detection cross section for the
DM-nucleon scattering is defined in terms of Ayy:

1
2m% vy m2
A = 9.5
dd = 2 sin2a < m%,z) ’ ©:3)
_ 2m3 vy
A, =M 9.6
dd = 3 sin2a’ ©.6)

where Ay, is derived from Ay, in the limit mpg, > mpy,. It is important to notice that the ampli-
tude (9.3) was derived from renormalizable and unitary Lagrangian with the full SM gauge sym-
metry, and thus can be a good starting point for addressing the issue of validity of complementarity.
The amplitude for the monojet with missing transverse energy(¥ ;) signature at hadron collid-
ers is connected to the amplitude (9.3) by crossing symmetry s <+ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to include the following form factor:

1 1 my;, mi;, 1

— — =3 | = : - - = > 9.7
Afld Afid §— m%{l +imyg Ty,  §— m%iz + imp,Th, Agol(s)
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where § = mfc » 1s the square of the invariant mass of the DM pair. Note that s > 4m§( in the physical
region for DM pair creation, and that there is no single constant scale A.,; for an effective operator
that characterizes the gg — x X, since § varies in the range of 4m§c < § < s with /s being the center-
of-mass (CM) energy of the collider. Also note that we have to include two scalar propagators with
opposite sign in order to respect the full SM gauge symmetry and renormalizability. This is in sharp
contrast with other previous studies where only a single propagator is introduced to replace 1/A.
The two propagators interfere destructively for very high § or small ¢ (direct detection), but for
m%il <§< m%iz, they interfere constructively. The 1/s suppressions from the s-channel resonance
propagators make the amplitude unitary, in compliance with renormalizable and unitary QFT.

If one can fix § and m%,z > §, we can ignore the 2nd propagator. But at hadron colliders,
§ is not fixed, except for the kinematic condition 4m§c < § < s (with s = 14TeV for example at
the LHC@14TeV). Therefore we cannot say clearly when we can ignore § compared with mlz,j,2 at
hadron colliders, unless m%,2 > s (not §).

One can derive the bound on the effective mass scale M, within the full renormalizable and
unitary models and compared with the bounds derived with the EFT approaches, with the same
Agq. The results are shown in Fig. 3: the left panel on the monojet + £, from ATLAS data and the
right panel on the 7 + £, from the CMS data. The blue lines are the results from the simplified
model with a singlet scalar propagator, and the red lines are those from the renormalizable and
unitary (and gauge invariant for the VDM) models. Note that the bounds depend very much on
the underlynig model assumption, and are sensitive to the 2nd scalar boson, which does not appear
in the EFTW or the usual simplified model. These plots show that it is very important to analyze
the monojet + f; and t7 + [ data from the LHC within well-defined renormalizable, unitary and
gauge invariant DM models. The usual EFT and the simplified models without the full SM gauge
symmetry do not describe DM physics at high energy colliders properly.

401

150 my | 50 GeV | 400 GeV m,y, = 50GeV
my = 50GeV SM = -
- M| —e = ll\dlt
lAdd HP.| —a— | -4~ 30! —~—— —e
my |50 Ge 3e
; 100 ,; x |50 GeV 400 GeV
© © - -
= o, .-
* N *
; 50 // RN o E . 50GeV
my = 100Cg 7 my, = 400GeV my = 400GeV
Y e
¥y 3 e e T - -
Or [ Iasislininy P el K . . n i o2 P i L3 . ! n i
50 100 500 1000 5000 10* 3-10% 50 100 500 100 5000 10* 3-10%
mpy, [GeV] mpy, [GeV]

Figure 5: Observed exclusion limits in terms of m, and M, with 90% CL. from mono-jet+£ search (left)
and 17 + F 1 search (right).

10. Conclusion and Outlook

In this talk, I discussed a class of dark matter models where dark gauge symmetry plays an
important role in stabilizing electroweak scalar DM or making them long lived enough compared

14



EW scale DM models with dark gauge symmetries Pyungwon Ko

with the age of the universe. I discussed three explicit examples: (i) DM is stable due to unbro-
ken dark gauge symmetry Z3 originating from U(1)x gauge symmetry, (ii) DM is stable due to
topological reason, the famous 't Hooft-Polyakov monopole in the hidden sector, and the unbroken
U (1) subgroup gaurantees the stability of the vector DM in the monopole sector, and (iii) DM is
long lived due to global flavor symmetry which is an accidental symmetry of underlying new strong
interaction in the dark sector. I also discussed the limitation of the DM EFT or simplified DM mod-
els, which are not either renormalizable or not invariant under the full SM gauge invariance. Both
of them are important in the DM model building for studying DM phenomenology at high energy
colliders. Also dark Higgs or dark gauge bosons can play important role in DM self-interaction or
galactic center y-way execss, which are not possible in the

One of the generic predictions of the Higgs portal DM models and hidden sector DM models
with local dark gauge symmetry is the existence of a new neutral scalar boson which is mostly the
SM singlet if the DM particles are either fermion or vector. It affects the DM signatures at high
energy colliders because of the form factors with two scalar propagators with negative sign, Eq.
(21). This feature is a consequence of the full SM gauge invariance and renormalizability, and can
not be seen in the usual EFT approach or simplified DM models. The detailed study of the Higgs
portal DM phenomenology at future colliders will be presented elsewhere.
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