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The longitudinal double spin asymmetries Ap
1 and the spin dependent structure function of the

proton gp
1 were extracted from COMPASS data in the region of low Bjorken scaling variable x

and low photon virtuality Q2. The data were taken in 2007 and 2011 from scattering of polarised
muons off polarised protons, resulting in a sample that is 150 times larger than the one from the
previous experiment SMC that pioneered studies in this kinematic region.
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1. Introduction

The inelastic scattering of polarised leptons off polarised nucleons has played an important role
in the study of the structure of nucleons in the last few decades. Particularly interesting is the region
of low x, corresponding to high parton densities. However, in fixed target experiments, x and Q2 are
highly correlated, and probing the low x region implies also entering the non-perturbative region of
Q2 < 1 (GeV/c)2, which is poorly known experimentally and where perturbative QCD cannot be
applied. Nevertheless, this region allows studies of the transition from the non-perturbative regime
of photoproduction to the perturbative region of deep inelastic scattering where several predictions
were formulated [1, 2, 3]. Previously, the Spin Muon Collaboration (SMC) has presented its results
on Ap

1 and gp
1 in this region [4]. However, large errors have not permitted a detailed comparison with

predictions. COMPASS has a large sample in this kinematic region, of the order of 7×108 events,
and it is now possible to extract Ap

1 and gp
1 in two-dimensional bins of the following variables:

(x,Q2), (ν ,Q2), (x,ν) and (Q2,x), where ν is the energy difference between the incoming and the
scattering lepton.

2. Method

The COMPASS collaboration runs a fixed target experiment at the CERN SPS [5]. It uses a
multipurpose apparatus, and only the setup relevant for the measurement described here will be
detailed. The experiment uses a tertiary muon beam that is naturally polarised. In 2007 and 2011,
respectively, a positive muon beam of 160 GeV or 200 GeV with a longitudinal polarisation of
around 80% was used. The beam impinges on a 1.2 m long solid state target of ammonia that
contains polarised protons with a polarisation of about 85%. The dilution factor, which accounts
for the fraction of the material that is polarisable in the target is about 16%. The target polarisation
is built up and maintained using a superconducting solenoid providing a magnetic field of up to
2.5 T and a dilution refrigerator that allows temperatures of the target material as low as 60 mK. A
large acceptance, two-staged spectrometer contains two dipole magnets and tracking, calorimetry
and particle identification detectors in both stages of the setup.

During the 2007 and the 2011 data taking periods, the target was divided in tree cells, of 30,
60 and 30 cm, with consecutive cells longitudinally polarised in opposite directions. This allowed
to simultaneously record data for the two target spin configurations, with similar acceptances for
both. In order to further reduce possible systematic effects, the polarisation directions were rotated,
typically every twenty-four hours. In addition, the relative directions of target cell polarisations
with respect to the target solenoid field direction were swapped at least once per year, to further
minimise possible systematic uncertainties.

The main selection criteria of the events include Q2 < 1 (GeV/c)2, x ≥ 4× 10−5 and 0.1 <

y < 0.9, where y is the fraction of energy loss by the muon in the nucleon’s rest frame. Due to the
low scattering angle of the scattered muon, the position of the interaction inside the target cannot
be determined precisely. Therefore, at least one additional track besides the scattered muon must
originate from the interaction point. This “hadron method” was first introduced by the SMC ex-
periment which also showed that inclusive asymmetries at low x are not biased by this method [6].
It is also required that the selected events do not come from the elastic scattering of beam muons
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off target material electrons. The final asymmetry thus obtained consists of 676× 106 events, of
which 447×106 were collected in 2007 with a 160 GeV beam and 229×106 events were collected
in 2011 with a 200 GeV beam. This is about a factor 150 times larger than the data sample of the
SMC in a similar phase-space region. The data were divided into bins of two kinematic variables,
whose average values are shown in Fig. 1 for the four sets of two-dimensional bins used.

The number of events collected of the two relative spin configurations (of parallel and an-
tiparallel beam and target polarisations) is related to the double longitudinal spin asymmetry of the
proton Ap

1 by
N
←⇒,
←⇐ ' aφ n σ̄(1±Pb Pt f DAp

1). (1)

Here a is the acceptance, φ is the beam flux, n is the number of nucleons in the target, σ̄ is
the muon-proton spin-independent cross-section, Pb and Pt are, respectively, the beam and target
polarisations, f is the dilution factor and D is the depolarisation factor, that accounts for the fraction
of the muon polarisation that is transfered to the virtual photon.

Data are taken before and after field rotations that invert the target cell polarisations. Thus
the ratio (N

←⇒,1 ·N
←⇒,2)/(N

←⇐,1 ·N
←⇐,2) can be directly computed; the superscripts 1 and 2 refer to

before and after the field rotation. After substituting the event number expressions from Eq. 1
and making reasonable assumptions on the stability of the experimental setup, we obtain a second
order equation for Ap

1 that can be solved to obtain this quantity. To optimise the statistical errors,
each event is given a weight ω = f DPb. This is done for sets of data of the two relative spin
configurations obtained close in time, typically every forty-eighty hours. These asymmetries per
configuration are combined into weighted averages of final asymmetries for each kinematic bin. To
account for spin-independent radiative events, the program TERAD [7] is used. The corrections,
which are functions of x and y (the fraction of the lepton’s energy lost in the nucleon rest frame),
are included in the (effective) dilution factor. Spin-dependent corrections are obtained using the
program POLRAD [8] and are applied to the asymmetries. The asymmetries were further corrected
for the presence of polarisable 14N in the target material. Thorough checks were done to identify
possible sources of false asymmetries, leading to the conclusion that the systematic uncertainties
on asymmetries are similar in size to the statistical ones.

The spin dependent structure function gp
1 is obtained from Ap

1 using

gp
1 =

F p
2

2x(1+R)
Ap

1 . (2)

Here F p
2 is the spin independent structure function, which comes either from the SMC fit to data [6],

or, in the case of low x and low Q2, from a model [9]. R is the ratio of the absortion cross-
sections of the longitudinally and transversely polarised virtual photon, which is based on the
SLAC parameterisation [10] extended to low Q2 values [11].

3. Results and discussion

The longitudinal double spin asymmetries at low x for the proton observed by COMPASS are
positive, see Fig. 2, at contrast with the results of the SMC, albeit within large errors of the latter.
COMPASS asymmetries for the deuteron in this region are zero [11]. No particular trends are
visible for the asymmetries nor for the structure function gp

1 as functions of x and ν .
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Figure 1: Average values of the pairs of independent variables for each of the four sets of two-dimensional
bins used: (a) (x,Q2), (b) (ν ,Q2), (c) (x,ν) and (d) (Q2,x).

The Ap
1 and gp

1 extracted in the first two-dimentional set of bins (x,Q2) is shown in Fig. 3.
Superimposed are the predictions of the model from Ref. [1], based on GVMD ideas. We can see
slightly positive asymmetries, as in the one-dimensional analyses.

There are no significant differences between the datasets obtained with two diferent beam
energies, and there is no significant trend in the data as function of Q2 or x. There is a reasonable
compatibility with the predictions of the model [1]. The same conclusions can be drawn for the
other three sets of two-dimensional bins studied, (ν ,Q2), (x,ν) and (Q2,x). Furthermore, no strong
dependence of gp

1 with x or with Q2 is visible in Fig. 3(b).
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Figure 2: Ap
1(x) at low x and low Q2 from COMPASS and from previous experiments [4, 12, 13]. A clear

positive asymmetry is seen at very low x of the COMPASS data which also demonstrate a significantly
improved precision of the measurement.
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Figure 3: (Top) The asymmetry Ap
1(Q

2,x) and (bottom) the structure function gp
1(Q

2,x) extracted from the
2007 and 2011 data. Lines in Fig. (a) indicate predictions of the model of Ref. [1].
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