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We study the transverse polarization of hyperons produced in high-energy unpolarized proton-

proton collisions in the framework of the collinear factorization. This phenomenon is a twist-3

observable which receives contributions from a twist-3 distribution and a twist-3 fragmentation

function. We focus on the former contribution and derive the corresponding leading-order cross

section. For the soft-gluon-pole contribution, we develop the “master formula" which reduces

the partonic cross section to a certain 2→ 2 parton scattering cross section and thus simplifies

the calculation greatly. We also calculate the soft-fermion-pole contribution for the first time and

show that it vanishes in all channels.
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1. Introduction

Transverse polarization of hyperons produced in high-energy unpolarized proton-proton colli-
sion,pp→Λ↑X, has been known for a long time since its first discovery in 1970s [1]. Conventional
parton model and perturbative QCD, which had a success in the description of high energy pro-
cesses, could not account for this phenomenon. Therefore it has been a big challenge for QCD the-
orists to understand the mechanism of the polarization. This is an example of transverse single-spin
asymmetries (SSA), since only one particle participating in the scattering is transversely polarized.
Other observed SSAs includepp↑ → πX andep↑ → eπX etc.

Nowadays it is known that SSAs are a twist-3 observable in the collinear factorization [2, 3],
which is valid when an observed final state hadron has a large transverse momentum,PT ∼ Q ≫
ΛQCD. In this framework, SSA is described as an effect of multi-parton correlations either in the
initial nucleon or in the final fragmentation process. These effects appear in the form of a twist-3
distribution function or a twist-3 fragmentation function in the spin-dependent cross section. So far
the complete twist-3 cross section forp↑p→ πX has been derived [4, 5, 6, 7, 8, 9] and the RHIC
data for this process [10] has been analyzed [11]. However, forpp→ Λ↑X, complete twist-3 cross
section is not yet available. In this paper, we study this process based on the twist-3 mechanism.

For p(p)+ p(p′)→ Λ↑(Ph,S⊥)+X, the twist-3 cross section consists of two terms:

σ ∼ ∑
a,b,c


(A) Ea

F(x1,x2)
⊗

f b
1 (x

′)
⊗

Hc
1(z)

⊗
σA

+

(B) f a
1 (x)

⊗
f b
1 (x

′)
⊗

Ĝc
F(z1,z2)

⊗
σB,

(1.1)

where the subscriptsa, b, c denote quark species and the symbol⊗ denotes convolution with re-
spect to the momentum fractions. Here,Ea

F andĜc
F represent the twist-3 quark-gluon correlation

function in the nucleon and the twist-3 fragmentation function forΛ↑, respectively. Other distri-
bution and fragmentation functions are twist-2;f a

1 is the unpolarized distribution function andHc
1

is the transversity fragmentation function forΛ↑. σA,B represent the partonic cross sections. In
this study, we focus on the first term. The hyperon polarization is a naivelyT-odd observable,
which occurs as an interference between the amplitudes that have different complex phases. Ac-
cordingly the hard part for the (A) term occurs as a pole contribution from an internal propagator.
This pole contribution is classified into two kinds, i.e., soft-fermion-pole (SFP) which leads to
x1 = 0 or x2 = 0, and soft-gluon-pole (SGP) which results inx1 = x2. The SGP contribution ap-
pears as derivative and nonderivative terms of the SGP functionEa

F(x,x). These were calculated in
the previous studies [12, 13] and it was shown that only the derivative term contributes. The SFP
contribution appears only as a nonderivative term, but has not been calculated yet.

The purpose of this study is twofold. First we present a rederivation of the SGP cross section
in the light of the “master formula" which connects the partonic hard part for the SGP cross section
to a certain2→ 2 parton scattering cross section. This will give a relation between the hard cross
section for the derivative term and that for the nonderivative one. Second we present the calculation
for the SFP contribution for the first time.
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Figure 1: Diagrammatic representation of the master formula for the SGP contribution. The partonic SGP
cross section corresponding to ISI and FSI can be obtained from a 2→ 2 partonic diagram. Each blob
represents the 2→ 2 scattering amplitude.

2. SGP contribution

We consider the (A) term in (1.1). In this contribution, a parton coming from the proton
with the momentump′ has a momentumx′p′ and a quark fragmenting into the finalΛ↑ has a
momentumpc = Ph/z. Twist-3 quark-gluon correlation function contributes from the proton with
the momentump. The SGP contribution was calculated in the previous studies [12, 13] and it was
shown that the non-derivative term vanishes [13], which is in contrast to the case ofp↑p→ πX. In
this section, we develop a master formula for this contribution, which has an advantage that it can
simplify the actual calculation and make clear the origin of the vanishing nonderivative term. The
master formula was first developed for the contribution from the twist-3 quark-gluon correlation
function in the transversely polarized nucleon toep↑ → eπX [14] and p↑p→ πX [15].

The SGP contribution consists of 2 types of diagram, i.e., the initial-state-interaction (ISI)
diagrams and the final-state-interaction (FSI) diagrams, depending on to which parton line the co-
herent gluon attaches. We call the hard parts for these contributionsSI,F

λβ (k1,k2,x′p′, pc)pλ where
k1 andk2 are the quark momenta entering the initial proton with the momentump before collinear
expansion. To get the partonic hard part for the SGP cross section, we need to calculate the deriva-
tive of SI,F

λβ with respect tok2 and take the collinear limitk1,2 → x1,2p. Master formula for this
contribution reads [16]

εαβnp
∂SF

λβ (k1,k2,x′p′, pc)pλ

∂kα
2

∣∣∣∣∣
SGP

ki=xi p

=

[
1

x1−x2+ iε

]pole

εαβnp
[
Sγ
⊥

d
dpα

c
+

1
p· pc

{
(p·S⊥)g γ

α −S⊥α pγ
}]

S̃F
βγ(x1p,x′p′, pc), (2.1)

εαβnp
∂SI

λβ (k1,k2,x′p′, pc)pλ

∂kα
2

∣∣∣∣∣
SGP

ki=xi p

=

[
−1

x2−x1+ iε

]pole

εαβnpSγ
⊥

d
d(x′p′α)

S̃I
βγ(x1p,x′p′, pc),(2.2)

whereS⊥ is the polarization vector forΛ↑ and S̃F,I
λβ represents a certain2 → 2 scattering cross

section. From these formulae, the SGP cross section can be written in the following form:

EPh

d∆σFSI

d3Ph
=

MN

32πs

∫
dx′

x′
f1(x

′)
∫

dz
z2 H1(z)

∫
dx
x

δ (ŝ+ t̂ + û)ε pcpnS⊥

×
( ŝ

t̂û

)[
x

dEF(x,x)
dx

∆σF
D +EF(x,x)

(
−∆σF

D +∆σF
ND

)]
, (2.3)
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EPh

d∆σ ISI

d3Ph
=− MN

32πs

∫
dx′

x′
f1(x

′)

∫
dz
z2 H1(z)

∫
dx
x

δ (ŝ+ t̂ + û) ε pcpnS⊥

×1
û

[
x

dEF(x,x)
dx

∆σ I
D +EF(x,x)

(
−∆σ I

D +∆σ I
ND

)]
, (2.4)

wheres= (p+ p′)2, ŝ= (xp+x′p′)2, t̂ = (xp− pc)2, û= (x′p′− pc)2 andMN is the nucleon mass.
In (2.3) and (2.4), ∆σF,I

D,ND represents some2→ 2 partonic cross sections. The appearance of∆σF,I
ND

is the different point from the case ofp↑p→ hX, which is due to the fact that the spin vectorS⊥ is
involved in (2.1) and (2.2). After calculation of∆σF,I

D and∆σF,I
ND, it turned out that∆σF,I

D = ∆σF,I
ND.

This implies that the nonderivative terms vanish identically, which is consistent with what was
found by direct calculation in [13]. This way we finally obtained the following result:

EPh

d∆σSGP

d3Ph

=
πMNα2

s

s
εPhpnS⊥ ∑

a,b,c

∫
dx′

x′
f b
1 (x

′)
∫

dz
z3 Hc

1(z)
∫

dx
dEa

F(x,x)
dx

σab→c δ (ŝ+ t̂ + û), (2.5)

with the partonic cross section in each channel

σqq′→q =
1

N2

2ŝ
t̂2 − 1

N2

ŝ2

t̂3 , σqq→q = σqq′→q−
( 1

N
+

1
N3

) ŝ
t̂û

+
1

N3

ŝ2

t̂2û
,

σqq̄′→q =
(N2−2

N2

) ŝ
t̂2 −

1
N2

ŝ2

t̂3 , σqq̄→q = σqq̄′→qq̄′ +
1

N3

1
t
+

1
N3

ŝ
t̂2 ,

σqq̄→q̄ = − 1
N3

1
û
+
( 1

N
+

1
N3

) ŝ
t̂û
,

σqg→q = − N2

N2−1
û
t2 +

1
N2−1

1
û
− 1

N2(N2−1)
ŝ
t̂û

− 1
(N2−1)

2ŝ2

t̂3 , (2.6)

whereN = 3 is the number of colors for a quark. These results also agree with the previous
ones [12, 13].

3. SFP contribution

According to the twist-3 formalism of [3], the SFP cross section for this process can be ob-
tained from the following formula:

EPh

d∆σ
d3Ph

=
iMN

64π2s

∫
dx′

x′
f1(x

′)
∫

dz
z2 H1(z)

×
∫

dx1

∫
dx2EF(x1,x2)εαβnp

( 1
x1−x2

)
SSFP

αβ (x1p,x2p), (3.1)

whereSSFP
αβ denotes the hard part for the SFP contribution. By this formula, we calculate the

partonic diagrams shown in Figs. 2-4. It turned out that the SFP partonic cross section vanishes
identically in all channels after summing over all diagrams. This differs from the case ofp↑p →
πX [7] where the SFP cross section survives. From this result the SGP contribution given in (2.5)
is the only contribution from the twist-3 unpolarized distribution topp→ Λ↑X.
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x1p

x
′
p
′

pc

x2p

Figure 2: Lowest order diagrams for the hard part of the SFP contribution in theqq′ → qq′ andqq→ qq
channels. The twist-3 distribution contributes from the lower side of each diagram. For each diagram, three
diagrams corresponding to a different attachment of the coherent gluon line to one of the dots need to be
considered. The barred propagator gives rise to SFP. Mirror diagrams also contribute.

Figure 3: The same as Fig. 2, but for theqq̄→ qq̄ channel. Diagrams for the ¯qq→ qq̄ channel are obtained
by reversing the arrows of the quark lines and shifting the fragmentation insertion to the other quark line
crossing the final-state cut.

Figure 4: The same as Fig.2, but for theqg→ qgchannel.
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4. Summary

In this study, we calculated the contribution from the twist-3 quark-gluon correlation function
in the unpolarized nucleon topp→ Λ↑X. For the SGP contribution, we have developed the mas-
ter formula and have confirmed the previous result which was obtained by direct calculation. The
master formula is useful to understand why only the derivative term survive and also to include
next-to-leading-order correction to the SGP cross section. We have also calculated the SFP contri-
bution and have shown that it vanishes identically in all channels. Accordingly the derivative term
of the SGP contribution is the only term for the twist-3 distribution contribution topp→ Λ↑X.
For the analysis of the hyperon polarization one needs to include the contribution from the twist-3
fragmentation function, which will be reported elsewhere.
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