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In order to derive twist-3 cross sections in the collinear factorization, it is convenient to introduce
three types (i.e., intrinsic, kinematical and dynamical) of twist-3 distribution and fragmentation
functions. We derive a complete set of the constraint relations among those twist-3 functions,
using the QCD equation-of-motion (EOM) and the Lorentz invariance properties of the correla-
tion functions. The twist-3 cross sections, in general, depend on the auxiliary light-like vectors
which are introduced to define the twist-3 functions from the correlation functions. We argue that
the twist-3 cross sections acquire a frame-independent (Lorentz invariant) form thanks to those

constraint relations.
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1. Collinear twist-3 distribution and fragmentation functions

We first summarize the distribution and fragmentation functions which are necessary for the
calculation of twist-3 cross sections. The collinear quark distribution functions in the nucleon are
defined from the lightcone correlator

*dA
y(x) = [ T (PS|4;(0) [0: Anlgi () PS) (1)

where ¢; is a quark field with the spinor index i, and |PS) is the nucleon state with momentum
P (P? = M}) and the spin vector S (P-S = 0). For P* = (E, P) we define two lightlike vectors
pt and n# as p* = (P*/v/2)(1,P/|P|) and n* = (1,—P/|P|)/(V2P") with PT = (E +|P|)/V/2,
which satisfy P* = p* + (M3 /2)n* and p-n = 1. Decomposition of ®(x) defines the quark dis-
tributions listed in Table 1. [0; An] is a gauge link connecting 0 and An. Likewise collinear quark
fragmentation functions can be defined from the fragmentation correlator

/ —i% < (0| [£oom; 0] gi(0) | PuSn; X) (PuSh; X | Gj(Am) [Am; feom]|0)(1.2)

The hadron momentum P, (Ph = M}) can also be decomposed as P}’ = p} + (M7 /2)m* by intro-
ducing two lightlike vectors ph and m* which are defined s1m11arly to p* and n*. Fragmentation
functions defined from A(z) are summarized in Table 1. For precise definition of each distribution
and fragmentation function, we refer the readers to [1]. We name the twist-3 functions defined
from ®(x) and A(z) as intrinsic twist-3 distribution/fragmentation functions.

N\ q Ave. S| S h\q Ave. S| S
Ave. | fi(x), e(x) Ave. | Di(z), E(z), H(2)
S” g1 (x) hL(x) S” EL(Z) Gy (Z) HL(Z)
S gr(x) | m(x) Si Dr(z) Gr(z) | Hi(z)

Table 1: Collinear quark distribution functions in the nucleon (left) and quark fragmentation functions for
spin-1/2 hadron (right) which are classified by the spin of the hadron and a quark. In the left table e, hr
and gy are intrinsic twist-3 distributions while others are twist-2 distributions. In the right table, E, Hy, and
G are naively T-even intrinsic twist-3 functions, while H, Ej, and Dy are naively T-odd intrinsic twist-3
functions. Others are twist-2.

The second type of twist-3 functions are called kinematical ones and are defined from the
transverse-momentum-dependent correlators as

) (x) = /dszkP &, (x,kr), A5 (2 /d pt’ Ai(epL), (1.3)

where ®(x,kr) and A(z, p, ) are given as

dA [ d*zr .5 -
@ k) = [ S [ Gk (R 5] 3(0) 05 ol on-t21]

X[eon+zr; An+zr]gi(An+2z7) |P,S), (1.4)

1 d?*z _&_~ .
M) = 3 L [ 5 [ Gtz Ol ot s koo 0] 0) i3 X)
C

><(PhSh;X|qj(),m—i—zJ_) [Am+zy 5 feom+z, |[foom +z;Feom +ooz, |[0). (1.5)
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N\q| Ave. S| Sy h\q| Ave S| Sy

Ave. hll(l)(x) Ave. Hll(l)(z)
Si i () S Hi(2)
Si | fir ) | i) . | Dir(0) | G @)

Table 2: Kinematical twist-3 distribution functions (left) and fragmentation functions (right) classified by
the spin of the hadron and a quark.

Decomposition of & ;;(x) and AD ;;(2) defines kinematical twist-3 functions as listed in Table 2.
The third type of the twist-3 functions are called dynamical twist-3 functions and defined from
the quark-gluon correlator:

=d , |
P / u AP, 5] G (0) (05 pn] ignn F11P (n) [tns An] gi(An) |P;S),
(1.6)
“d
Af’,ij(zazl) / [.l z ﬂ(%*lr)ﬂ
<0 [ioom; um] igmn 1P (pm)[wm; Am)qi(Am) |PySi; X)
X (PiSns X| ;(0) [0 Zoom] |0). (1.7)

Decomposition of ®F, ;j(x,x') and AP, 4(2,7'), respectively, defines the dynamical twist-3 functions
as listed in Table 3. The dynamical twist-3 distribution functions are real, and have definite sym-
metry under x; <> xp: Hpy and Fpp are symmetric, while Hgy and Gy are anti-symmetric. The
dynamical twist-3 fragmentation functions are complex functions: The real part is naively 7 -even,
while imaginary part is naively 7-odd. Neither real nor imaginary parts have definite symmetry
properties. The support of dynamical twist-3 functions is —1 < |x12| < 1, =1 < |xp —x1| < 1 for
distribution functions and 0 < z; < 1, z1 < zp < oo for the fragmentation functions.

Ave. Hry (x1,x2) Ave. Hpy(z1,22)
S| Hpp (x1,x2) S| Hpi(z1,22)
S | Frr(xi,x2), Grr(x1,X2) S\ | Drr(z1,22), Grr(z1,22)

Table 3: Dynamical twist-3 distribution functions (left) and fragmentation functions (right) classified by the
hadron spin configuration.

2. Operator constraints for the twist-3 functions

The twist-3 functions given in Tables 1-3 are not independent but have to obey constraint rela-
tions which follow from the QCD equation of motion (EOM) and the Lorentz invariance property
of the correlator for each distribution and fragmentation function. The latter is a nonlocal version
of the operator product expansion (OPE). In [1], we derived the complete set of those relations, in
particular, those for the twist-3 fragmentation functions are new. Here we list the results.
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2.1 EOM relations
2.1.1 EOM relations for the twist-3 distribution functions

(i) Unpolarized nucleon:
H x’
xe(x) = mqfl 29/ dx L5 2) &, ,

where & denotes the principal value prescription.
(ii)Transversely polarized nucleon:

(x,x") — GFT(x x’)

F,
00 =xer ()~ " m )+ 2 [ a0
(iii) Longitudinally polarized nucleon:

X H, xx
hfL(l)(x):—zh()—i——gq e@/ dy ) ,

2.1.2 EOM relations for the twist-3 fragmentation functions

(i) Unpolarized hadron:

HJ_(I)(Z) = _@_’_/Zmd% S[[_IIFU(Zlaz )]’

2z z 27
E(z = d7 %FIFU Z,ZI m,
o (): — [ - (1 )] q Dl(Z),
ZZ z < 177 2Mh

where 3 and R represent imaginary and real parts, respectively.
(ii) Transversely polarized spin-1/2 hadron:

D = d 3[Dpr(2,2)] - S[Grr(z,2
D) = — TZ(Z) +X ZTzz [ FT(ZZ)l]_l[ FT(ZZ)]’
| Gr(z) m ©d7 R[Drr(z,7)] — R[Grr(z,7')]
GET)(Z) - 7 ﬁiH ( ) /z ZTQ %_l,

(iii) Longitudinally polarized spin-1/2 hadron:

E;(2) . * d7 S[[:IFL(Z,ZI)]
2z YA U
z 7

Hi(z) my ©d7 R[Hrr(z,7)]
H = az ARG
1L (Z) 2Z + 2Mh G ( ) / ZIZ % l,

2.2 Lorentz invariance relations

2.1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

In this subsection, we list the relations which follows from the Lorentz invariance of the cor-

relators. We present the relations in the form of the so-called Lorentz invariance relations (LIR)

which are obtained by combining the OPE relations with the EOM relations.
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2.2.1 LIRs for twist-3 distribtuion functions

(i) Transversely polarized nucleon:

d U Ger(xX
gr(x):gl(x)—l—ag%)(x)—&@/_ldx % (2.10)

(ii) Longitudinally polarized nucleon:

d 1) L Hpr(x,x)
hL(x):hl(x)—ahlL (x)+2¢@/1dxlm (211)
2.2.2 LIRs for twist-3 fragmentation functions
(i) Transversely polarized spin-1/2 hadron:
Gr(z) Gi(z) ( d) (1) 2/°° d7 R[Grr(z,7))]
—=—=+4+(1-z— |G - = — 2.12
z z “dz 17 (2 zJ): 2?2 (1/z—1/7)? (212)
Dr(z) d\ 1) 2/°° d7 3[Drr(z,7)]
=—|1—-z—)D - = — 2.13
z ( Za’z> i () 2. 7% (1/z—1/7)?2 (2.13)
(ii) Longitudinally polarized spin-1/2 hadron:
Hi(z) _ Hi(2) ( d) 1(1) 2/°° d7 R[Hp1(z,7)]
=——>—|1—-z— |H - — 2.14
z z “az) e @) 2. 7% (1/z—1/7)¥ (2.14)
H(z) d\ iy _ 2 / = dz' S[Ary(2,7)]
—~=—(1—-z—|H —— — . 2.15
z < Zdz) 1@ zJ: 22 (1)z—1/7)? @.15)

Using the EOM relations and LIRs, one can eliminate the intrinsic and kinematical twist-3
functions in favor of the dynamical twist-3 functions and the twist-2 functions. In this sense the
intrinsic and kinematical twist-3 functions may be regarded auxiliary functions. On the other hand,
in the leading-order calculation, simple structure of partonic hard cross sections sometimes leads
to a compact formula for the twist-3 cross sections in terms of the intrinsic and kinematical twist-3
functions [2, 3].

3. Lorentz invariance of the twist-3 cross sections

Twist-3 cross sections can be obtained as a convolution of the hadronic correlators introduced
in Sec. 1 and the corresponding hard part. The resulting twist-3 cross sections involve intrinsic,
kinematical and dynamical twist-3 distribution and fragmentation functions together with twist-2
functions. In the decomposition of the hadronic correlators, the coefficients of the twist-3 functions
contain lightlike vectors n and m, and thus the expression for the cross sections also contain these
vectors. On the other hand, the cross section should have a Lorentz invariant expression in terms
of only the physical vectors such as momenta of the particles participating in the process and the
spin vectors. Though n and m are uniquely determined from P and P, their expression in terms of
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the physical vectors depends on a frame we choose, which makes the frame-independence of the
cross section unclear.

In our recent paper [1] (see also [4]), we showed that the EOM relations and LIRs lead to
frame-independent expression for the twist-3 cross sections, using, as an example, the inclusive
hadron production in the lepton-nucleon collision, e(l) + P(P) — h(P,) +X. We define Mandelstam
variables for this process as S = (P+1)?, T = (P—P,)? and U = (I — P,)?. In the cross section, [, P
and P, can be regarded as lightlike in the twist-3 accuracy, and therefore P and Py, can be identified
as p and pp, respectively. To get a cross section in terms of the physical momenta, we note that
nk and m* can be expanded in terms of P}, P*, [* and eH!PPi
n=m?>=0,P-n=1and P,-m=1, one may write

. Taking into account the conditions,

2+ x1 xU Q2+ x1 STU

ntt = ijflﬂLiS l“—lr[ (ZS )+ g X.sz]f”+7688”lp1)”, 3.1)
2411 nS(2+n17 STU

mt = nP“——U "+ [ (2 )+ A nZ IJ;;"‘T](-;S”[PP’I. (3.2)

In the eN center-of-mass frame, n* = 2/" /S, which corresponds to y = ¢ = 0. In the iP center-
of-mass frame, n* = —2P}' /T and m* = —2P* /T, which corresponds to ¥ = n = —2/T and
Xe = Ne = 0. After obtaining the twist-3 cross sections in terms of n and m, one can eliminate n
and m by (3.1) and (3.2). For eNT — hX, éNT — hX, eN — A'X and éN — ATX, we have shown
that the EOM relations and LIRs, and

TFer(x,x) = fin (%), THry (%,%) = i (%), (3.3)

lead to Lorentz invariant expression for the twist-3 cross sections which are independent of the
parameters ¥, Xe, N and 1ne. Therefore the frame-independence of the twist-3 cross sections is
guaranteed.
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