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1. Introduction

In a perturbative QCD calculation, higher-order corrections bring the logarithmic energy-
scale dependence of nonperturbative function which is described by the scale evolution equa-
tion. Systematic treatment of the scale dependence of the twist-3 functions is important for a
quantitative description of the single-transverse spin asymmetry(SSA). The twist-3 distribution ef-
fect of the transversely polarized proton is embodied as the so-called Qiu-Sterman (QS) function
GF(x1,x2)(TF(x1,x2)) in the spin-dependent cross section formula. The scale evolution equation
of the QS function was discussed by using several different approaches so far [1, 2, 3, 4, 5, 6, 7, 8].
One of the approaches is the next-to-leading-order (NLO) calculation ofthe transverse momentum
Ph⊥-weighted cross section. We present a complete NLO cross section for thetwist-3 Ph-weighted
cross section for SSA in semi-inclusive deep inelastic scattering.

We consider the SSA for light-hadron production in SIDIS,

e(ℓ)+ p(p,S⊥)→ e(ℓ′)+h(Ph)+X . (1.1)

Within the collinear factorization framework, the SSA can be described by thetwist-3 effects. In
this process, the SSA receives two types of twist-3 contributions, the distribution effect of the
transversely polarized proton and the fragmentation effect of the light-hadron. We focus on the
former contribution in this paper to derive the evolution equation ofGF(x,x). In the case of SIDIS,
the cross section formula can be expressed in terms of the following Lorentzinvariant variables,

Sep = (p+ ℓ)2, Q2 =−q2, xB =
Q2

2p ·q
, zh =

p ·Ph

p ·q
, (1.2)

whereq = (ℓ− ℓ′) is the momentum of the virtual photon. In this paper, we discuss the NLO
Ph⊥-weighted polarized cross section defined as

d4〈Ph⊥∆σ〉

dxBdQ2dzhdφ
≡

∫

d2Ph⊥εαβ+−S⊥αPh⊥β

( d6∆σ
dxBdQ2dzhdP2

h⊥dφdχ

)

. (1.3)

2. Leading-order cross section and next-to-leading-order virtual correction
cotribution

Figure 1: Leading order diagram for thePh⊥-weighted cross section. The red barred propagators give pole
contributions.

We discuss a leading-order(LO)Ph⊥-weighted cross section. LO diagrams are shown in Fig.
1. In the collinear factorization approach, the SSA requires a complex phase given by a pole of
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an internal propagator. The red barred propagators in Fig.1 give polecontributions. The LO cross
section can be easily calculated as

d4〈Ph⊥∆σ〉LO

dxBdQ2dzhdφ
=−

zhπMNα2
em

4x2
BS2

epQ2 ∑
q

e2
qGq(xB,xB)D

q(zh), (2.1)

where MN is the nucleon mass andαem is the QED coupling constant. The next-to-leading-
order(NLO) virtual correction contribution is given by one-loop correction to the LO diagrams.
This has been calculated in [8] as

d4〈Ph⊥∆σ〉virtual

dxBdQ2dzhdφ
= −

zhπMNα2
em

4x2
BS2

epQ2

αs

2π ∑
q

e2
qGq(xB,xB)D

q(zh)

×
[

CF

(4πµ2

Q2

)ε 1
Γ(1− ε)

(

−
2
ε2 −

3
ε

)]

+ · · · . (2.2)

Here we adopted the dimensional regularization scheme andε = 2− D/2. We neglectO(1)-
contributions throughout.

3. Next-leading-order real emission contribution

q

k1 k2

Ph
z

k2 − k1

Figure 2: Diagrammatic description for SGP contribution.

In this section, we discuss NLO real emission contributions. In SIDIS case, the pole contri-
butions can be classified into four types as soft-gluon-pole(SGP), soft-fermion-pole(SFP), hard-
pole(HP) and another hard-pole(HP2) [9, 10]. It was found in [11]that the SFP contribution is
completely cancelled in the SIDIS case. We discuss other 3 pole contributions below.

First we discuss the SGP contribution. This is given by the diagrams in Fig. 2.The SGP
contribution has been calculated in [8] as

d4〈Ph⊥∆σ〉SGP

dxBdQ2dzhdφ
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= −
πMNα2

em

4x2
BS2

epQ2

αs

2π

(4πµ2

Q2

)ε 1
Γ(1− ε)

∫

dzD(z)
∫

dx
x

GF(x,x)

×
1

2N

[

−
2
ε2 δ (1− x̂)δ (1− ẑ)+

1
ε

1+ ẑ2

(1− ẑ)+
δ (1− x̂)−

1
ε

2x̂3−3x̂2−1
(1− x̂)+

δ (1− ẑ)
]

+ · · · , (3.1)

whereαs is the QCD coupling constant, ˆx = xB/x andẑ = zh/z.

Figure 3: Diagrammatic description for HP contribution.

Next we discuss the HP contribution shown in Fig. 3. This contribution can be calculated as

d4〈Ph⊥∆σ〉HP

dxBdQ2dzhdφ

= −
πMNα2

em

4x2
BS2

epQ2

αs

2π

(4πµ2

Q2

)ε 1
Γ(1− ε)

∫

dzD(z)
∫

dx
x

(

ẑCF +
1

2N

)

×
{

GF(x,xB)
[ 2

ε2 δ (1− x̂)δ (1− ẑ)+
1
ε

(

2δ (1− x̂)δ (1− ẑ)−
1+ ẑ2

(1− ẑ)+
δ (1− x̂)

−
1+ x̂

(1− x̂)+
δ (1− ẑ)

)]

+ G̃F(x,xB)
1
ε

δ (1− ẑ)
}

+ · · · (3.2)

The last term associated with another twist-3 functionG̃F(x,xB) was found in [12] and other part
was calculated in [8].

Figure 4: Diagrammatic description for HP2 contribution.

Finally we discuss the HP2 contribution shown in Fig.4. This was first calculated in [12] as

d4〈Ph⊥∆σ〉HP2

dxBdQ2dzhdφ

= −
πMNα2

em

4x2
BS2

epQ2

αs

2π

(4πµ2

Q2

)ε 1
Γ(1− ε)

∫

dzD(z)
∫

dx
x

×
1

2N

{

−GF(xB,xB − x)
1
ε
(1−2x̂)δ (1− ẑ)− G̃F(xB,xB − x)

1
ε

δ (1− ẑ)
}

+ · · · (3.3)
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4. Scale evolution equation of GF(x,x)

After combining all contributions in previous sections, we can obtain the NLOPh⊥-weighted
cross section as

d4〈Ph⊥∆σ〉LO+NLO

dxBdQ2dzhdφ
=−

zhπMNα2
em

4x2
BS2

epQ2

αs

2π

(4πµ2

Q2

)ε 1
Γ(1− ε) ∑

q
e2

q

×

[

(

−
1
ε

)

{

Dq(zh)
{

∫ 1

xB

dx
x

[

CFPqq(x̂)G
q
F(x,x)+

N
2

((1+ x̂)Gq
F(xB,x)− (1+ x̂2)Gq

F(x,x)
(1− x̂)+

+G̃q
F(xB,x)

)]

−NGq
F(xB,xB)+

1
2N

∫ 1

xB

dx
x

(

(1−2x̂)Gq
F(xB,xB − x)+ G̃q

F(xB,xB − x)
)}

+Gq
F(xB,xB)CF

∫ 1

zh

dz
z

Pqq(ẑ)D
q(z)

}]

+ · · · , (4.1)

wherePqq(x) is the splitting function

Pqq(x) =CF

[ 1+ x2

(1− x)+
+

3
2

δ (1− x)
]

. (4.2)

From the structure of the collinear divergence 1/ε, we can derive the scale evolution equation of
GF(x,x) as

∂
∂ ln µ2 GF(xB,xB,µ2) =

αs

2π

{

∫ 1

xB

dx
x

[

Pqq(x̂)GF(x,x,µ2)

+
N
2

((1+ x̂)GF(xB,x,µ2)− (1+ x̂2)GF(x,x,µ2)

(1− x̂)+
+ G̃F(xB,x,µ2)

)]

−NGF(xB,xB,µ2)

+
1

2N

∫ 1

xB

dx
x

(

(1−2x̂)GF(xB,xB − x,µ2)+ G̃F(xB,xB − x,µ2)
)}

, (4.3)

which completely agrees with the results in other approaches [4, 6, 7].
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