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1. Introduction

In a perturbative QCD calculation, higher-order corrections bring tlyarlthmic energy-
scale dependence of nonperturbative function which is describedebgctdie evolution equa-
tion. Systematic treatment of the scale dependence of the twist-3 functions igamtpimr a
guantitative description of the single-transverse spin asymmetry(SSA)wist-3 distribution ef-
fect of the transversely polarized proton is embodied as the so-calle8t®iman (QS) function
Gk (x1,%2)(Te(X1,X2)) in the spin-dependent cross section formula. The scale evolution equation
of the QS function was discussed by using several different appesamo far [1, 2, 3, 4, 5, 6, 7, 8].
One of the approaches is the next-to-leading-order (NLO) calculatitiredfansverse momentum
R, -weighted cross section. We present a complete NLO cross section fovighe B,-weighted
cross section for SSA in semi-inclusive deep inelastic scattering.

We consider the SSA for light-hadron production in SIDIS,

e(l)+p(p,S.) — e()+h(R) + X. (1.1)

Within the collinear factorization framework, the SSA can be described binise-3 effects. In

this process, the SSA receives two types of twist-3 contributions, the disbmbeffect of the

transversely polarized proton and the fragmentation effect of the liglhteha We focus on the

former contribution in this paper to derive the evolution equatioBg©fx,x). In the case of SIDIS,
the cross section formula can be expressed in terms of the following Laoneatiant variables,

o5 p-Fh

% = p+£ 27 Q2:_q27 XB = ’ Zh: )

p=(P+0) 2p-q p-q

whereq = (¢ — ¢') is the momentum of the virtual photon. In this paper, we discuss the NLO

R, -weighted polarized cross section defined as

d4<HqLAO'>
dxgdQ?dz,d¢

(1.2)
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2. Leading-order cross section and next-to-leading-order virtual correction
cotribution

Figure 1: Leading order diagram for th@, | -weighted cross section. The red barred propagators giee po
contributions.

We discuss a leading-order(L®) , -weighted cross section. LO diagrams are shown in Fig.
1. In the collinear factorization approach, the SSA requires a complesepiigen by a pole of
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an internal propagator. The red barred propagators in Fig.1 givecpateibutions. The LO cross
section can be easily calculated as

d*(R.A0)°  znMnag,

dxgdQ2dz,dp 453 %, Q?

Y €G%(xe,xe)D(n), (2.1)
q

where My is the nucleon mass ana., is the QED coupling constant. The next-to-leading-
order(NLO) virtual correction contribution is given by one-loop coti@n to the LO diagrams.
This has been calculated in [8] as

d4<HU_AO'>Virtua| B ZhﬂMNO!gm Qs

dxgdQdz,dp 4x%5épQ2§T%e§Gq(XB,XB)D“(Zh)
4ruPye 1 2 3
X{CF< Q? ) r1—e) (‘?‘E)]*"" (2.2)

Here we adopted the dimensional regularization schemegaad — D/2. We neglectO(1)-
contributions throughout.

3. Next-leading-order real emission contribution

q

by

Figure 2: Diagrammatic description for SGP contribution.

In this section, we discuss NLO real emission contributions. In SIDIS, ¢heepole contri-
butions can be classified into four types as soft-gluon-pole(SGP)fesafion-pole(SFP), hard-
pole(HP) and another hard-pole(HP2) [9, 10]. It was found in tha} the SFP contribution is
completely cancelled in the SIDIS case. We discuss other 3 pole contribugtove b

First we discuss the SGP contribution. This is given by the diagrams in Figrth2.SGP
contribution has been calculated in [8] as

d4<H1LAO'> SGP
dxgdQ2dz,d¢
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2
_ _ MnGen <4n” 1 /dD / Gk (X, X)
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whereaqs is the QCD coupling constant,= xg/X andZ= z,/z

baais

Figure 3: Diagrammatic description for HP contribution.

Next we discuss the HP contribution shown in Fig. 3. This contribution camlcelated as

d4<H1LAO'> HP
dxgdQ2dz,d¢

mMNQZ,, as /4T, 1
B _4x%g§pQ2 27'[( QI; 1— /dZD / ﬂ)
1+2
(1-2)4
5(1-2))] +Ge(x xB)15(1 7))+ (3.2)

{G,:(x Xg) [ 2 5(1-5(1—2)+ E(25(1—&)5(1—2) - 5(1—%)

1+X
(1R,
The last term associated with another twist-3 functmr(x, xg) was found in [12] and other part
was calculated in [8].

Figure 4: Diagrammatic description for HP2 contribution.

Finally we discuss the HP2 contribution shown in Fig.4. This was first calcllatg 2] as

d4<H1J_AO'>HP2
dxgdQ?dz,d¢
mMna3, ds 4n/.l /
— dzD(z
AER,Q? 2n< Q2 1—
xi{—G (X8, X —x)}(1—2>2)5(1—2)—é (X8, % —x)lé(l—i)}Jr--- (3.3)
2N F\AB, AB € F\AB,AB < .
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4. Scale evolution equation of Gg (X, X)

After combining all contributions in previous sections, we can obtain the RL.Gweighted
cross section as

d4<Pon>Lo+NLo__ZhnMNaénaS<4,w2>e 1 &
dxgdQ?dzdp  4E,Q% 2m\ Q? F(l—s)%

(-3){oran] [ Flermanatinn (A0 0m 0 —omeie

8 ) XB? E (1—)?)_;'_
29 q 1 rhdx AGY 2q
+GF(XB,X)>} — NGg (Xg, Xg) + / —((1—2x)GF(xB,xB—x)+GF(XB,XB—X)>}
2N Jx
q Yz . g
+61(xax)Cr | “Poq(®DI@) |+, (4.1)
Zh
wherePyq(x) is the splitting function
1+x% 3
Pyq(X) = Cr [eréé(l—x) . 4.2)

From the structure of the collinear divergencee lwe can derive the scale evolution equation of
Gr (X, X) as

[ & rumee o w?)

B

N /(14 R)Gr (Xg, X, 1+R2)Ge (X, X, 4?) =~
+2<( )Gr (X8, X, U A( )G u)+GF(XBaXaIJ2)>}_NGF(XBvXB’IJZ)
(1-%)+

7} 2, Os
0InHZGF(XBvauu )_E_[
2)_

1 ldx - b = ,
+ﬂ XBY((l_ZX)GF(XBva_X;IJ )+ Gr (Xg, X8 — X, U ))}7 (4.3)

which completely agrees with the results in other approaches [4, 6, 7].
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