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We investigate the gluon transverse momentum dependent correlators as Fourier transform of
matrix elements of nonlocal operator combinations. At the operator level these correlators include
both field strength operators and gauge links bridging the nonlocality. In contrast to the collinear
PDFs, the gauge links are no longer unique for transverse momentum dependent PDFs (TMDs)
and also Wilson loops lead to nontrivial effects. We look at gluon TMDs for unpolarized, vector
and tensor polarized targets. In particular a single Wilson loop operators become important when
one considers the small-x limit of gluon TMDs.
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1. Introduction

Parton distribution functions (PDFs) establish the connection between hadrons in initial state
and the hard process. As such they replace in the basic description of the cross section the polar-
ization sums for quarks and gluons by correlators,

wi(k)u;(k) o /éij = ®;;(k;P,S), (L.1)
e (k)eP* (k) o« —g%P — TP (k;P) (1.2)

for a quark with momentum k in a hadron with momentum P. In high energy processes the hadron
momenta defining light-like directions and we use the light-like vector n with P-n = 1. The corre-
lators involve quark and gluon fields. The important combination of fields, referred to as leading
twist, are those minimizing the canonical dimension. We use a Sudakov expansion of the parton
momentum, k = xP +kr + ..., where ... is along n and is the irrelevant momentum component
that can be integrated over leaving correlators ®;;(x,kr) and T'*P (x,kr) for quarks and gluons,
respectively. Including transverse momenta of the partons they are parametrized in structures with
specific Dirac (ij) and Lorentz structure (o¢3) and transverse momentum dependent (TMD) PDFs
f..(x,k%), in short referred to as TMDs.

The high energy kinematics is an essential ingredient in this. In the center of mass of the
partonic scattering process, the hadronic momenta are in essence light-like and the hadronic masses
becomes irrelevant. In the hadron rest frame, a given hadron is struck at one particular light-front
time. In this situation the light-cone fractions x of the parton momentum can be identified with
scaling variables, such as the Bjorken scaling variable xz = —g?/2P-q in deep inelastic scattering.
The transverse components of the parton with respect to the hadron can be accessed in processes
where one observes a non-collinearity in at least three hard momenta, that in the absence of intrinsic
transverse momentum in the hadrons are expected to be collinear, of course given a particular
partonic subprocess.

This inclusion of transverse momentum and TMD factorization all works straightforward at
tree-level with factorization theorems being studied. Effects of infrinsic transverse momenta of
partons are best visible in (partially) polarised processes. In that case one has polarization vectors
or tensors for hadrons (parametrizing the spin density matrix) or measurable polarization vectors
depending on final state distributions of decay products. The initial state spin (symmetric and
traceless) vectors or tensors for hadrons are in analogy to the momentum expanded as

PH
SH = SLﬁ + S5 —MSn*,
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ensuring the relations P-S = P, S*V = 0.

2. TMD correlators and distribution functions

The quark and gluon TMD correlators in terms of matrix elements of quark fields [1, 2, 3]
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including the Wilson lines U needed for color gauge invariance of the TMD case are given by

dc-Pd

o v.prim) = [ imf ePE(P.SIW(0) Ui ) Vi(E)IP.S) | @.1)
/ d&-Pd?

F[U’U}“V(x,pr;n)Z/w

(color summation or color tracing implicit). The non-locality in the integration is limited to the

e (P.S|F™(0)Up g F™ () Uiy IPS)p 22)

lightfront, £-n = 0, indicated with LF. The gauge links U[07 g are path ordered exponentials (two
different ones for gluons) needed to make the correlator gauge invariant [4, 5, 6]. For the quark cor-
relator the gauge link bridges the non-locality, which in the case of TMDs involves also transverse
separation. The simplest ones are the future- and past-pointing staple links U[ <§ (or just [£]) that

just connect the points 0 and & via lightcone plus or minus infinity, U[[;%] = U[[g} oo U[OT ST]U[[::L g

We use these as our basic building blocks. For gluons TMDs the most general structure involves
two gauge links (triplet representation), denoted as [U,U’], connecting the positions 0 and & in

different ways. The simplest combinations allowed for [U,U’] are [+,+], [—,—], [+,—] and
[—,+]. More complicated possibilities, e.g. with additional (traced) Wilson loops of the form
vt = U[[0 };]U[[g 2)] = U[[0 é] [[ 5 or its conjugate are allowed as well. A list with all type of con-

tributions can be found in Ref. [7, 8]. If U = U’ one can also use a single gauge link in the octet
representation.

We note that the combination of two different gauge lines as appearing in the gluon correlator
even without explicit gluon fields yields an interesting nonvanishing matrix element appearing in
the correlator

. dé-Pd .
I ](x,pr;n)z/é(zn)fT PP SIUG LU IPS)] = ST, (prin). 23)

None of the above correlators can be calculated from first principles. They are parametrized
in terms of TMD PDFs, which at the level of leading twist contributions for unpolarized hadrons is

given by
V(s prin) = {7 )+ e B 24
Moy 2
D) = e+ (P ) ) @9

For quarks and gluons one can find results in Refs [9, 10, 11, 12], including tensor polarized targets
for quarks. The gauge link dependence in these parametrizations is contained in the TMDs. Note
that for quarks A7 is T-odd, while for gluons both functions are T-even. At this meeting we report
on the parametrization including tensor polarization in detail outlined in Ref. [13], including also
the parametrization of the Wilson loop correlator that only depends on p7 and for unpolarized
hadrons just is proportional to a scalar function.

T, (pr) o< e(p}). (2.6)

Even if any gauge link defines a gauge invariant correlator, the relevant gauge links to be used
in a given process just follow from a correct resummation of all diagrams including the exchange
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of any number of A” gluons between the hadronic parts and the hard part, i.e. gluons with their
polarization along the hadronic momentum. They nicely sum to the path-ordered exponential. For
quark distributions in semi-inclusive deep inelastic scattering they resum into a future-pointing
gauge link, in the Drell-Yan process they resum into a past-pointing gauge link, which is directly
linked to the color flow in these processes. Color flow arguments suggest that the Wilson loop
correlator may be important in diffractive processes.

3. Operator analysis

In the situation of collinear PDFs (integrated over transverse momenta), the non-locality is
restricted to the lightcone, &-n = & = 0 (LC) and the staple links reduce to straight-line Wil-
son lines. The correlators then involve the non-local operator combinations W(O)U[[g]ﬂl//(éﬂ LC

or F”“(O)U[[O"}‘:]F""(é)U[[g]?O] |Lc, expanded in terms of leading twist operators Y(0)D"...D"y(0)
and Tr[F"™D"...D"F"¥(0)D"...D"] operators. For transverse momentum dependent correlators
the dependence on &r gives in the parametrization distribution functions multiplied with Dirac or
Lorentz structures involving pr. It is useful to look at the pr dependence in terms of symmetric
and traceless tensors (such as for instance in the parametrization of the gluon correlator). The rank
of the tensor defines the rank of the distribution function. Rank zero functions are the collinear
PDFs.

Considering distribution functions of definite rank is also useful because the functions have the
same rank in impact parameter space, which is important for the study of evolution. In principle
a factor pr in the parametrization can be rewritten as a derivative working on &z. For distribution
functions such differentiation gives rise to two types of operators in the correlator, for quarks being
of the form

~ U] _ d&-széT ip-E o N
@ rn) = [ S P SO Vg0 wEIPS)| . G
where the O() operators are combinations of idr (£) = iD¥(E) —A%(&) and G¥(), defined in a
color gauge invariant way (thus including gauge links),

1 “ n n n

AF(E) =3 /_ _dn-Pe(§P—nP)UL P (MU, (3.2)
1 °° n n n

6*&) =5 [ _anpull Femully, (33)

with £({) being the sign function. Note that G*(&) = G*(&7) does not depend on &-P, implying
in momentum space p-n = p* = 0, hence the name gluonic pole matrix elements [14, 15, 16, 17,
18, 19]. The operator in Eq. 3.3 is actually time-reversal odd, giving rise to leading terms in the
correlators that are important for single spin asymmetries. The factors multiplying the gluonic pole
correlators depend on the gauge links in the correlators, which as already mentioned only depend
on the hard process in which the correlators are needed to connect to the hadrons involved. Most

well-known are the single gluonic pole factors for staple links C . giving rise to the sign flip
of T-odd distribution functions going from semi-inclusive deep inelastic scattering to Drell-Yan

linked to the different color flow in the respective underlying hard processes.
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Depending on the rank of the functions, more gluonic pole operators may enter [20]. For
two gluonic poles this lead to an interesting link between the Wilson loop correlator and the gluon
correlator at x = 0. The Wilson loop correlator only depends on 7 in the small-x region where
k? ~ k2 and one finds for x ~ 0

o
Tt 10 (x, pr) e« ELEL T ), (3.4)

The above results agree with the result in ref. [21] where in the small-x limit le’_] (x, p2) becomes
proportional to the dipole cross section. In Ref. [22] that connection was already made on the
correlator level for the case of a transversely polarized nucleon. Results for tensor polarization are
included in Ref. [13]. We note that in general combination gluonic poles operators G* with the
field strengths F'* or the quark fields, can give rise to multiple color neutral combinations which
has to be taken into account.

4. Conclusions

TMDs enrich the partonic structure of hadrons as compared to collinear PDFs. At the technical
level, there are a number of complications such as the appropriate process-dependent gauge links,
the matching of small and large pr and the more complex evolution that need to be addressed. The
study of the operator structure of TMDs with definite rank is important and instructive to study the
role of TMDs for polarized hadrons and for establishing links to small-x physics.
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