
P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
6
0

Novel parametrization for the leptonic mixing matrix
and CP violation

David Emmanuel-Costaa, Nuno Rosa Agostinho∗a, J.I. Silva-Marcosa, Daniel
Wegmana,b

a Departamento de Física and CFTP, Instituto Superior Técnico (IST), Universidade de Lisboa,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
b IFPA, Université de Liège, Bât B5 , Sart Tilman B-4000 Liège 1, Belgium
E-mail:david.costa@tecnico.ulisboa.pt
nuno.agostinho@tecnico.ulisboa.pt

juca@cftp.tecnico.ulisboa.pt

dwegman@ulg.ac.be

We study leptonic CP violation from a new perspective. For Majorana neutrinos, a new
parametrization for leptonic mixing of the form V = O23 O12 Ki

a ·O reveals interesting aspects
that are less clear in the standard parametrization. We identify several important scenario-cases
with mixing angles in agreement with experiment and leading to large leptonic CP violation. If
neutrinos happen to be quasi-degenerate, this new parametrization might be very useful, e.g., in
reducing the number of relevant parameters of models. †

Proceedings of the Corfu Summer Institute 2015 "School and Workshops on Elementary Particle Physics
and Gravity"
1-27 September 2015
Corfu, Greece

∗Speaker.
†This contribution is based on the work of Ref. [1].

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:david.costa@tecnico.ulisboa.pt
mailto:nuno.agostinho@tecnico.ulisboa.pt
mailto:juca@cftp.tecnico.ulisboa.pt
mailto:dwegman@ulg.ac.be


P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
6
0

Novel parametrization for the leptonic mixing matrix and CP violation Nuno Rosa Agostinho

1. Introduction

Observations of neutrino oscillations have solidly established the massiveness of the neutrinos
and the existence of leptonic mixing, which means that new physics beyond the Standard Model
are required. During the last decades, several attempts were made in order to overcome questions
as the origin of the leptonic flavor structure or why leptonic mixing differs tremendously from the
observed quark mixing. In particular, one may impose family symmetries forbidding certain cou-
plings and at the same time explaining successfully the observed structure of masses and mixings,
as well as predicting some other observables [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Although
the structure of leptonic mixing is predicted in such models, the mass spectrum turns out to be
unconstrained by such symmetries. The absolute neutrino mass scale is still missing, one does not
know whether neutrinos are Majorana or Dirac particles, and the nature of leptonic CP violation
is still open (for a recent review see Ref. [16]). From the analysis of neutrino oscillation experi-
ments one can extract bounds for the light neutrino mass square differences ∆m2

21 ≡ m2
2−m2

1 and
∆m2

31 ≡ m2
3−m2

1. Recent cosmological observations, based on model depend analysis, have con-
strained the sum of neutrino masses [17], which then imply an upper bound of the lightest neutrino
mass. All knowledge on the light neutrino mixing is encoded in the Pontecorvo-Maki-Nakagawa-
Sakata matrix (PMNS) [18, 19, 20]. In order to further analyze the leptonic flavour structure, it is
essential to parametrize all the entries of the full PMNS matrix in terms of six independent parame-
ters. It is clear that the choice of a parametrization does not impose any constraints on the physical
observables.

Some underlying aspects, such as symmetries or relations that the experimental data may
suggest can be understood by means of parametrizations. Although parametrizations are equivalent
among themselves, some of them may be much appropriate to describe symmetries and patterns.
Recall the usefulness of the Wolfenstein parametrization [21] in the quark sector to describe the
hierarchical character of the quark families.

Among many parametrization proposed in the literature, the standard parametrization is the
most widely used, and the six parameters are three mixing angles, namely θ12, θ13 ,θ23 ∈ [0,π/2],
one Dirac-type phase δ and two Majorana phases α1,α2 in following form:

V SP = K ·O23 ·KD ·O13 ·O12 ·KM , (1.1)

where the real orthogonal matrices O12, O13 and O23 are the usual rotational matrices in the (1,2)−,
(1,3)−, and (2,3)−sector, respectively. The diagonal unitary matrices KD and KM are given by
KD ≡ diag(1,1,eiαD) and KM ≡ diag(1,eiαM

1 ,eiαM
2 ). Within the standard parametrization, one may

recall that the consistent values for the neutrino mixing angles θ12 and θ23 together with the small-
ness of θ13 suggest that the neutrino mixing is rather close to the tribimaximal mixing (TBM) [22].
It is important to stress that this parametrization is (modulo irrelevant phases), the same as the
one used for the quark sector, despite the fact of leptonic mixing being quite different. The nature
of leptonic CP violation is still an open question, and it is, thus, not yet clear what, is the most
adequate form to express or parametrize this phenomenon. In this paper we study leptonic CP
Violation in the context of a new parametrization for leptonic mixing of the form

V = O23 O12 Ki
α ·O , (1.2)
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where Ki
α = diag(1, i,eiα) and O is a real orthogonal matrix parametrized with three mixing angles.

We then have a total of six parameters, namely five mixing angles and one complex phase α , which
is the required number of independent parameters for describing the PMNS matrix.

The paper is organized as follows. In the next section, we present in detail the new parametriza-
tion stated in Eq. (1.2). In Sec. 3, we motivate the use of this new parametrization in the limit of
degenerate or quasi-degenerate neutrino spectrum. Then in Sec. 4, we present an alternative view
of large leptonic CP violation and interesting aspects that are less clear in the standard parametriza-
tion, using the new parametrization for leptonic mixing, discuss its usefulness and identify five
scenario-cases that lead to large Dirac-CP violation, and which have mixing angles in agreement
with experimental data. Results are shown for mixing and CP violation. In Sec. 5, we give a nu-
merical analysis of the scenarios described in the previous section, and, for the quasi-degenerate
Majorana neutrinos, a numerical analysis of their stability. Finally, in Sec. 6, we present our con-
clusions.

2. A novel parametrization

In this section, we present the new parametrization for the lepton mixing matrix:

V = KS O23 O12 Ki
α ·O , (2.1)

where KS = diag(eiα1 ,eiα2 ,eiα3)1 is a pure phase unitary diagonal matrix, O23, O12 are two elemen-
tary orthogonal rotations in the (23)- and (12)-planes, Ki

α = diag(1, i,eiα) has just one complex
phase α (apart from the imaginary unit i), and O is a general orthogonal real matrix described by 3
angles. The proof is given in Ref. [1].

It is clear that, as with the standard parametrization in Eq. (1.1), this parametrization has also
six physical parameters, but, some are now of a different nature: two angles in O23 and O12, three
other angles in O, but just one complex phase α in Ki

α . From now on, we use explicitly the
following full notation

V = OL
23 OL

12 ·Ki
α ·O = OL

23 OL
12 ·Ki

α ·OR
23 OR

13 OR
12 , (2.2)

where we have identified each of the elementary orthogonal rotations, either on the left or on the
right of the CP-violating pure phase matrix Ki

α , with a notation superscript L,R.

2.1 CP violation

In the Standard Parametrization (SP), we may distinguish two types of CP-violating phases:
Dirac and Majorana CP violation phases. The Dirac-type phases are determined by the four
independent arguments of the quartets arg(V1iVk jV ∗1 jV

∗
ki), with i 6= j 6= k and the Majorana-type

phases are given by the six independent arguments of the bilinears arg(Vi jV ∗ik), with j 6= k. In
the SP, these phases are the minimal CP-violation quantities when neutrinos are Majorana parti-
cles [23, 24, 25, 26, 27, 28, 29].

1The diagonal matrix KS has no physical meaning, since it only rephases the PMNS matrix V on the left. This can be
clearly seen in the weak basis where the charged lepton mass matrix is diagonal and through a weak basis transformation
the phases in KS can be absorbed by the redefinition of the right-handed charged lepton fields.
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Since the nature of leptonic CP violation is still open, it is not clear what could be the most
adequate form to express or parametrize this phenomenon. Here, as an alternative, we choose to
express CP violation in a different way, namely, as combinations of mixing angles and the unique
complex phase α . It is worth to note that, in our new parametrization, even when α = 0 or π ,
we still have CP violation due to the presence of an imaginary unit in the diagonal matrix Kα

i . In
particular, setting α = 0 the Dirac CP violation invariant ICP ≡ Im(V12V23V ∗22V ∗13) yields:

ICP =
1

32
(sin2θ

L
23 cos2θ

R
23(sin2

θ
L
12 cosθ

L
12 sin2θ

R
12(3sin3θ

R
13−5sinθ

R
13)

+8sin2
θ

L
12 cosθ

L
12 cos2θ

R
12 cos2θ

R
13 sin2θ

R
23 +(7cosθ

L
12 + cos3θ

L
12)sin2θ

R
12 sinθ

R
13 cos2

θ
R
13)

+2sin2θ
L
12 cos2θ

R
23 cosθ

R
23
(
sin2θ

R
12 cosθ

R
13(cos2θ

R
13−3)cos2θ

R
23 +2cos2

θ
R
13
)

−2cos2θ
R
12 sin2θ

R
13 sin2θ

R
23)) ,

(2.3)

which vanishes when θ L
12 = θ L

23 = 0 (i.e, omitting the left orthogonal matrices in Eq. (2.2)) and
when θ L

12 = θ R
23 = 0.

2.2 Usefulness

There are several motivations to consider a new parametrization. We still do not know the
exact nature of neutrinos: if they are Majorana or Dirac, as well if neutrinos mass spectrum is
hierarchical or quasi-degenerate. It turns out that if the mass spectrum is quasi-degenerate, the new
parametrization will be very useful and may reflect some specific nature of neutrinos, i.e. if they
are Majorana and quasi-degenerate. The left part OL

23 ·OL
12 ·Ki

α of Eq. (2.2) suggests some major
intrinsic Majorana character of neutrino mixing and CP violation, while the right part OR

23 ·OR
13 ·OR

12,
with three angles, reflects that there are 3 neutrino families and results in small mixing, comparable
to the quark sector, of the order of the Cabibbo angle. Indeed, we consider that our parametrization
incorporates well diverse fixed structures for the lepton mixing [22, 30, 31, 32] in the limit V13 = 0,
and in particular the case of TBM which e.g. in [33, 34] occurs as the result of a family symmetry.
If such a family symmetry exists, once it is broken at the electroweak scale, the reactor angle gets
a small contribution of the order of the Cabibbo angle, possibly related to the small neutrino mass
differences. Thus, from this point of view, the dominant contribution for large neutrino mixing
must come from the Majorana character of neutrinos. Other interesting aspect that arrives with this
new parametrization is the fact that the Dirac and Majorana CP violation quantities are related to
just one complex phase α present in Ki

α .
In the next sections, we shall the discuss how this new parametrization enables to view large

leptonic mixing from a new perspective.

3. Degenerate and Quasi-degenerate Majorana Neutrinos

3.1 Quasi-degenerate neutrino masses

In the weak basis where the charged lepton mass matrix is diagonal and real-positive, the
matrix So has a special meaning in the limit of exact neutrino mass degeneracy [35, 36]. In this
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limit the neutrino mass matrix Mo assumes the following form:

Mo = µ So = µ U∗o U†
o , (3.1)

where µ is the common neutrino mass. The matrix Uo accounts for the leptonic mixing. In the limit
of exact degenerate neutrinos, the orthogonal matrix O on the right of the new parametrization in
Eq. (2.2), has no physical meaning, since it can be absorbed in the degenerate neutrino fields. This
has motivated our proposal for the use of the new parametrization.

The usefulness of the new parametrization is particularly interesting if neutrinos are quasi-
degenerate. When the degeneracy is lifted, i.e. for quasi-degenerate neutrinos, the full neutrino
mass matrix becomes slightly different from the exact limit in Eq. (3.1):

M = µ (So +Qε) , (3.2)

where Qε is some small perturbation. In general, this perturbation may significantly modify the
mixing result for the exact case in Eq. (3.1). In view of our new parametrization, now the full
lepton mixing matrix diagonalizing M is described by

V = U ′o ·O , (3.3)

where U ′o is of the same form as Uo. As a consequence of the perturbation, the U ′o matrix will differ
slightly from the unitary matrix Uo that diagonalizes the degenerate limit part So, when Qε→ 0. The
same happens to the matrix O, which can be either small or possibly some large general orthogonal
matrix. In Sec. 5, we shall quantify this more explicitly, using numerical simulations.

3.2 CP Violation of Quasi-degenerate Neutrinos

It was pointed out in Ref. [35], that if neutrinos are quasi-degenerate (or even exact degenerate)
CP violation continues to be relevant. This can be understood if one defines Weak-Basis invariant
quantities sensitive to CP violation. An important invariant quantity, in this case, is

Gm ≡
∣∣∣Tr
(
[Mv Hl M∗v , H∗l ]

3
)∣∣∣ , (3.4)

where Hl = MlM
†
l is the squared charged lepton mass matrix. Contrary to the usual quantity I =

Tr
(
[M†

v Mv,Hl]
3
)

which is proportional to the Dirac CP violation quantity ICP, we find that the
quantity Gm signals CP violation even if neutrinos are exact degenerate. In fact, we obtain in this
limit

G≡ Gm

∆m
=

3
4

∣∣sin2θ
L
12 sin4θ

L
12 sin2 2θ

L
23 sin2α

∣∣ , where ∆m ≡ µ
6(m2

τ−m2
µ)

2(m2
τ−m2

e)
2(m2

µ−m2
e)

2 ,

(3.5)
with µ the common neutrino mass. θ L

12 and θ L
23 are, respectively, the angles of OL

12 and OL
23 in

Eq. (2.2)), and α is the complex phase of Ki
α = diag(1, i,eiα). Obviously, with the new parametriza-

tion for the lepton mixing in Eq. (2.2), this invariant takes on a new and relevant meaning. It is a
curious fact that G is so specifically (and in such a clean way) dependent on only, what we have
called, the left part of Eq. (2.2) and on sin2α .
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4. Leptonic CP violation from a New Perspective

In the case of the Standard Parametrization, if neutrinos are of the Dirac type, maximum CP
violation occurs by choosing αD = π/2. This is the only phase responsible for generating large CP
violation. On the other-hand, if neutrinos are Majorana there are two more CP violating phases αM

1
and αM

2 . Thus, one finds that large CP violation is limited to consider these two facts.
It turns out that if we switch to the new parametrization, one gets a much richer structure for

large CP violation, particularly if neutrinos are quasi-degenerate. In the next subsection, we shall
present different limit cases where it is possible to generate large CP violation. We explore all
combinations of the O23’s and O12’s that result in both solar and atmospheric mixing angles near
experimental result, while the other Oi j’s are kept small in order to obtain mixing matrices near to
V13 = 0, i.e. with a small reactor angle. Our choice to fix some parameters, assuming a preexisting
model and symmetry, is justified for the closeness of the TBM with the experimental data:

|V13|2 = 0, sin2
θatm = 1/2, sin2

θsol = 1/3. (4.1)

Thus, in zeroth order, we are able to reproduce the TBM 2. The free parameters, which are treated
as perturbation parameters, will be responsible for approximate our initial ansatz to the current
mixing angles, always with large leptonic CP violation. These values are close to the experimental
results at one-sigma level [37],

0.439 < sin2
θ23 < 0.599 , 0.0214 < sin2

θ13 < 0.0254 , 0.307 < sin2
θ12 < 0.339 . (4.2)

given in terms of the Standard Parametrization angles. Is easy to observe that 1/3 is an allowed
value for sin2

θ12, but values slightly lower are better. The central value for sin2
θ23 is above 1/2,

but values both below and above are preferred.
The experimentally measured mixing angles are given by the parameters of the new parametriza-

tion as:

|V13|2 = s2
θ L

12
c2

θ R
13

s2
θ R

23
+ c2

θ L
12

s2
θ R

13
, (4.3a)

sin2
θsol =

s2
θ L

12

(
cθ R

12
cθ R

23
− sθ R

12
sθ R

13
sθ R

23

)2
+ c2

θ L
12

s2
θ R

12
c2

θ R
13

1 − |V13|2
, (4.3b)

sin2
θatm =

c2
αc2

θ R
13

c2
θ R

23
s2

θ L
23
−2cαcθ L

23
cθ R

13
cθ R

23
sθ L

12
sθ L

23
sθ R

13
+ c2

θ L
23

s2
θ L

12
s2

θ R
13
+ c2

θ R
13

(
sαcθ R

23
sθ L

23
+ cθ L

12
cθ L

23
sθ R

23

)2

1 − |V13|2
.

(4.3c)

where we have used the identification cX = cosX and sX = sinX . In table 1 we present the values
of the parameters for each case.

2We could use other schemes with V13 = 0, instead of the TBM scheme: the hexagonal mixing [30], [32] or the
golden ratio mixing of type I [31]

6



P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
6
0

Novel parametrization for the leptonic mixing matrix and CP violation Nuno Rosa Agostinho

Table 1: Values of the parameters for each case.

OL
23 OL

12 OR
23 OR

13 OR
12

I-A -π/4 sin−1(1/
√

3) ε tR
23 ε tR

13 ε tR
12

I-B -π/4 ε tL
12 ε tR

23 ε tR
13 sin−1(1/

√
3)

I-C -π/4 sin−1(1/2) ε tR
23 ε tR

13 sin−1(1/
√

6)

II-A ε tL
23 ε tL

12 -π/4 ε tR
13 sin−1(1/

√
3)

II-B sin−1(1/
√

3) ε tL
12 -π/4 ε tR

13 sin−1(1/
√

3)

4.1 Limit case I

In this limit, we consider that the combination OR
23 ·OR

13 has small rotation angles, depending
on some small parameter ε typically of the order of Cabibbo angle or smaller:

V = OL
23 ·OL

12 ·Ki
α ·OεR

23 ·OεR
13 ·OR

12. (4.4)

Then, using a notation where the angle θ L
23 refers to OL

23, θ L
12 and θ R

12 refer to OL
12 and OR

12, respec-
tively, while the small angles coming from OεR

23 and OεR
13 are denoted as ε tR

23 and ε tR
13, respectively,

we can compute the large mixing angles, the element |V13|2 and the Dirac CP violation quantity
ICP. Within limit case I, we may distinguish two opposite scenarios and some extra intermediate
scenario, denoted by I-A, I-B and I-C.

4.1.1 Scenario I-A

This scenario corresponds to having OL
12 large with cos2θ L

12 =
1
3 , and OR

12 with cos2θ R
12 = ε tR

12.
It was also analyzed in Ref. [36]. Taking t13 = 0 and using the TBM scheme where θ L

23 =−π

4 , we
obtain:

sin2 (θatm) =
1
2
+

√
2
3

ε tR
23 sinα,

sin2 (θsol) =
1
3
+

ε2

9

(
3
(
tR
12
)2−2

(
tR
23
)2
)
,

|V13|2 =
ε2
(
tR
23
)2

3
,

ICP =

√
2

6
√

3

∣∣ε tR
23 cosα

∣∣= √2
6
|V13 cosα| .

(4.5)

The mixing angles and V13 can be fit with just the phase α , and the small parameter ε t23 of the
order of the Cabibbo angle. Within this scenario, it was also possible obtain a large value for ICP.
A non zero value for α is necessary to have a value of sinθatm 6= 1/2. As for the Majorana CP
violating phases, we obtain in leading order large values (∼ π/2) for both, since t13 is zero:

tanα
M
1 =

√
2

ε tR
12
, α

M
2 =

π

2
, (4.6)

7
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It is also interesting to compute the form of the neutrino mass mass for this scenario and the CP
violating quantity G for the TBM scheme:

Mν =
µ

3

 1 −2 −2
−2 −1+3e−2iα

2
1+3e−2iα

2
−2 1+3e−2iα

2
−1+3e−2iα

2

, G =
4
9
|sin(2α)| . (4.7)

4.1.2 Scenario I-B

In this scenario, considering the TBM, we have OL
12 small with cos2θ L

12 ≈ 1, OR
12 large with

cos2θ R
12 ≈ 1

3 and θ L
23 = −π

4 . This choice will provide to be crucial in order fit the experimental
results on mixing. Taking a small θ L

12 = ε tL
12, we find:

sin2 (θatm) =
1
2
+ ε tR

23 sinα,

sin2 (θsol) =
1
3
+

(
tL
12
)2

3
ε

2,

|V13|2 = ε
2 (tR

13
)
,

ICP =
ε

3
√

2

∣∣tR
13 cosα

∣∣ .
(4.8)

We need at least three parameters ε tR
13, ε tR

23, and α to fit the experimental result and generate
large CP violation. The central value for the solar angle can not be achieved, not even with the use
of all parameters. The Majorana phases in leading order are small violating CP phases:

tanα
M
1 =

3√
2

ε tL
12, tanα

M
2 =

ε tL
12√
2

(
1+

√
2tR

23

tR
13

)
. (4.9)

As for the neutrino mass matrix and CP violating quantity G, we obtain in leading order for
the TBM scheme:

Mν =
µ

3

1 0 0
0 sinα cosα

0 cosα −sinα

, G = 0. (4.10)

4.1.3 Scenario I-C

In this intermediate scenario, we take both OL
12 and OR

12 large with sinθ R
12≈ 1√

6
and sinθ L

12 =
1
2 .

Also choosing θ R
23 =−π

4 , we guarantee that the mixing is close to the TMB. We obtain in leading
order:

sin2 (θatm) =
1
2

(
1− ε tR

13 cosα−
√

3ε tR
23 sinα

)
,

sin2 (θsol) =
1
3
+

ε2

24

(
3
(
tR
13
)2−2

√
5tR

13tR
23−3

(
tR
23
)2
)
,

|V13|2 =
ε2

4

(
3
(
tR
13
)2

+
(
tR
23
)2
)
,

ICP =
ε

8

∣∣∣∣∣tR
13

(
−sinα +

√
5
3

cosα

)
+

1√
3

tR
23

(√
5
3

sinα + cosα

)∣∣∣∣∣ .
(4.11)

8
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The Majorana CP violating phases, in leading order, are large:

tanα
M
1 = 3

√
3
5
, tanα

M
2 =

√
3tR

13 +
√

15tR
23

3
√

5tR
13− tR

23

. (4.12)

The Majorana quasi-degenerate mass matrix and G quantity are in leading order for the TBM
scheme:

Mν =
µ

2


1 −

√
3
2

√
3
2

−
√

3
2

2e−2iα−1
2

2e−2iα+1
2√

3
2

1+2e−2iα

2
2e−2iα−1

2

, G =
9
16
|sin2α| . (4.13)

For the above results, we only need 2 parameters to fit the experimental results on mixing and
generate large CP violation: either the combination of the small parameter ε tR

13 with the phase α

or the combination of the small parameter ε tR
23 with the phase α . We must remember that this is

entirely dependent on the choice of the two large angles of OL
12 and OR

12.

4.2 Limit case II

In this limit, we consider that the combination OL
23 ·Ki

α ·OR
23 ·OR

12 gives the large contribution
whereas the other OL

12 and OR
13 have small angles:

V = OL
23 ·Oε L

12 ·Ki
α ·OR

23 ·OεR
13 ·OR

12. (4.14)

For this case we use the following notation: θ L
23 and θ R

23 are the angles of the orthogonal
matrices OL

23 and OR
23, respectively; θ R

12 refers to OR
12; the smaller angles ε tL

12 and ε tR
13 are the

rotation angles of Oε L
12 and OεR

13 , respectively. As in the limit case I, we may construct two opposite
scenarios: a scenario where OL

23 is large or a scenario where OR
23 is large. The scenario where

OL
23 is large, whereas OR

23 is small, is already contained in the scenario I-A of limit case I (modulo
some slight modifications which produce equivalent results). Therefore, it is sufficient to focus on
a scenario where OL

23 is small and OR
23 is large, or exceptionally on a scenario between, where both

are large.

4.2.1 Scenario II-A

In this scenario OL
23 is small and OR

23 is large. The angle of OL
23 is given by θ L

23 = ε tL
23,

sin2
θ R

12 =
1
3 and θ R

23 =−π

4 . Then, we obtain:

sin2(θatm) =
1
2
+ ε tL

23 sinα,

sin2(θsol) =
1
3
+

(
tL
12
)2

6
ε

2,

|V13|2 =
ε2

2

(
2
(
tR
13
)2

+
(
tL
12
)2
)
,

ICP =
ε

6

∣∣tL
12
∣∣ .

(4.15)

It is clear that we need at least three parameters to fit the experimental results and a large value for
Dirac-CP violation: the phase α plus the two small parameters ε tL

23 and ε tL
12. We cannot achieve

9
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a central value for the solar angle and using ε tL
12 6= 0, to guarantee that there is large ICP, will only

increase the value of the solar angle above 1σ . As for the Majorana-CP violating phases, only the
second one can be large:

tanα
M
1 =

3
2

ε tL
12, tanα

M
2 =

tL
12√
2tR

13

, (4.16)

The neutrino mass matrix and the quantity G are (in leading order) for the TBM scheme:

Mν = µI3×3, G = 0. (4.17)

4.2.2 Scenario II-B

This is an intermediate scenario where both angles of OL
23 and OR

23 are large, such that sin2(θ L
23)=

1
3 , sin2(θ R

23) =
1
2 and sin2(θ R

12) =
1
3 . In leading order, one finds:

sin2(θatm) =
1
2
+

√
2

3
sinα− ε2

12

((
tL
12
)2−8tL

12tR
13 cosα

)
,

sin2(θsol) =
1
3
+

(
tL
12
)2

6
ε

2,

|V13|2 =
ε2

2

(
2
(
tR
13
)2

+
(
tL
12
)2
)
,

ICP =
ε

18

∣∣4tR
13 cosα + tL

12
∣∣ .

(4.18)

If we take tL
12 much smaller than tR

13 and α small, we can make the prediction of ICP = 2
9 |V13|.

The Majorana-CP violating phases are obtained, in leading order,

tanα
M
1 =

3
2

ε tL
12, tanα

M
2 =

tL
12√
2tR

13

, (4.19)

where the second one can be large. For the mass matrix of the quasi-degenerate Majorana neutrinos,
as well for the G quantity, one obtains, in leading order, for the TBM scheme:

Mν = µ


1 0 0

0 e−2iα−2
3

√
2(e−2iα+1)

3

0
√

2(e−2iα+1)
3

2e−2iα−1
3

, G = 0. (4.20)

In matter of fact, with the TBM mixing scheme, we only need a small parameter ε tR
13 and α to

fit the experimental mixing angles and large Dirac-CP violation. By inspection of the expression
for sin2(θatm), we conclude that the phase α needs to be of the order of the Cabibbo angle. We
emphasize that this only was accomplished with the previous adjustment made to the two large
angles of OL

23 and OR
23.

4.3 Standard Parametrization vs New Parametrization

To justify that the new parametrization is an added value to better understand neutrino physics,
in particular quasi-degenerate Majorana neutrinos, we choose the scenario I-A and reproduce it in
the standard parametrization. Scenario I-A seems to be the most appealing since we only need two

10
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extra parameters to fit the experimental results on leptonic mixing. The other scenarios need more
parameters, or need more adjustment. This scenario also provides large Dirac-CP violation and
large Majorana phases, which can also be seen from a different perspective using the combined
CP violation quantity G: it is one of two scenarios that have G 6= 0, in leading order, and with an
appropriate choice of α , this quantity can be large.

In the standard parametrization, the scenario I-A is obtained with:

VSP = Oπ/4
23 ·KD ·Oθ

13 ·O
φ0
12, (4.21)

with sinφ0 =
1√
3

and θ = 0. For simplicity, we leave out the Majorana phases. In order to have
|V13| 6= 0, we have to switch on the angle O13. However, irrespective to the value that we choose for
θ , it is impossible to change the atmospheric angle, since |V23| = |V33|. To avoid this problematic
situation, we must choose from the start another angle for O23 different from π/4, or change the
TBM limit with some additional contribution, afterwards. With this, we show that in the Standard
Parametrization, it is impossible to adjust the TBM and correct the atmospheric mixing angle using
the remaining parameters.

This is in clear contrast with what one obtains in the context of the new parametrization. In
scenario I-A, with the suitable choice for the parameter ε tR

23, it is possible to adjust the atmospheric
mixing angle and generate a small |V13|, simultaneously, with large values for CP violation.

5. Numerical Simulation and Stability

For completeness, we give a numerical analysis of some of the scenarios described in the
previous section. We choose a fixed scheme, the TBM scheme constructed with the 5 different
scenarios. More precisely, we test

I-A : Vo = Oπ/4
23 Oφo

12 Ki
αo

I-B : Vo = Oπ/4
23 Ki

αo
Oφo

12 I-C : Vo = Oπ/4
23 Oφ1

12Ki
αo

Oφ2
12

II-A : Vo = Oπ/4
23 Oφo

12 II-B : Vo = Oθo
23 Ki

αo
Oπ/4

23 Oφo
12

(5.1)

where sinφo = sinθo =
1√
3
, sinφ1 =

1
2 , sinφ2 =

1√
6
. We define the Uo as the matrix on the left of,

together with the Ki
αo

. In the II-A case, this is the identity matrix. We define also the Oo as the
matrix on the right of the Ki

αo
. In the II-A case, this is the whole matrix Vo. For case II-B, αo = 0

as pointed out in the previous section. For the other cases, we assume for αo, diverse fixed values.
We illustrate in Fig. 1 the correlations among the observables for our best scenario I-A. The

figures plot sin2
θatm and ICP as a function of |V13|2 and ICP as a function of |V13|2, for particular

values of the parameters left unconstrained in the definition of each scenario according to Table 1.
The other scenarios are presented in Ref. [1]. A numerical analysis of Scenario I-A, was also done
in Ref. [36]. We can conclude from Fig. 1 that a large CP invariant ICP can be obtained in agreement
with the allowed experimental range of the observed parameters.

In addition, we also give a numerical analysis of the stability of the different scenarios. The
full neutrino mass matrix M is composed of an exact degenerate part in the form of a symmetric
unitary matrix So = U∗o ·U†

o , related to one of these TBM scenario schemes, and a part composed
of a random perturbation Qε . The matrix Uo corresponds to the left part of Eq.(5.1), including the

11
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Figure 1: Plotting sin2
θatm and the CP invariant Icp as a function of |V 2

13| for scenario I-A.

phase matrix Ki
α and will be different for each case, e.g. for case II-A, Uo is the identity matrix.

The right part of Eq.(5.1) is denoted by Oo. In the case II-A, O0 is the whole matrix V0.

Thus, the full quasi-degenerate neutrino mass matrix is as in Eq. (3.2):

M = µ (So +Qε) , (5.2)

where Qε is some small complex symmetric random perturbation:

Qε ≡ ε
2 Q , ε

2 =

(
∆m2

31
)exp

2µ2 .

We test the stability of lepton mixing of the different scenarios. We do not worry about the exact
mass differences, with two (reasonable) exceptions: we take for ε2 a fixed value. Taking into ac-
count the upper bound on the sum of neutrino masses as suggested by the Planck collaboration [17],
obtained in a model dependent analysis, i.e., ∑i mi < 0.23 eV, one gets for the common neutrino
mass µ . 0.08eV. However, if one relaxes this assumption and takes a somewhat larger value
for µ = 0.14, together with

(
∆m2

31
)exp

= 2.5× 10−3 eV2, we obtain ε2 . 0.064, which makes ε

of the order of the Cabibbo angle. These values make sure that we are in a mass range where the
computed output ∆m2

31 = O(1)×10−3 eV2. We discard cases generated by the perturbation where∣∣∆m2
31

∣∣ < ∣∣∆m2
21

∣∣. Further, we do not impose any other restrictions on the random perturbation Q
other than Re(Qi j) and Im(Qi j) to be real numbers between -1 and 1. For this analysis we do not
impose any other restriction to mass differences, e.g. the experimental results for mass differences:
further restrictions do not change significantly any of the plots. We are more concerned with the
stability of each scenario when the degeneracy is lifted.

Our numerical analysis consists in computing the full lepton mixing matrix V , for each differ-
ent mixing scenario and random Q′s in M, such that V T ·M ·V = D is real and positive. The lepton
mixing matrix can be decomposed in the new parametrization, which allows us to compare the new
U ≡O23 ·O12 ·Ki

α from the perturbation, with the original Uo in the degeneracy limit, for each case
in Eq.(5.1). To measure how much U differ from Uo, as well the differences between O and Oo, we

12
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Figure 2: Plotting ∆O versus ∆U for the five cases identified in Eq. (5.1) with αo = π/3 (left plot). Plotting
∆α versus ∆U for the five cases identified in Eq. (5.1) (right plot).

Figure 3: Plotting ∆O versus ∆U for the case I-B varying αo = π/2, π/3, π/4, π/6 and π/9 (left plot).
Plotting the CP invariant ICP as a function of ∆O considering restricted perturbations for Q (right plot).

evaluate a quantity ∆U and ∆O defined by:

∆U =
1
2 ∑

∣∣ ∣∣Ui j
∣∣− ∣∣(Uo)i j

∣∣ ∣∣ , ∆O =
1
2 ∑

∣∣ ∣∣Oi j
∣∣− ∣∣(Oo)i j

∣∣ ∣∣ .3 (5.3)

Notice that this definition does not "see" the phase factors of the Ki
α of U , or of the Uo. For this,

we evaluate the changing on the phases α by defining the quantity

∆α = | |sinα|− |sinαo| | , (5.4)

that compares the phase α of the Ki
α of U , with the phase αo of the Ki

αo
of Uo and discarding

differences of π . The II−A case, has no αo phases.
In Fig. 2 we plot ∆U as a function of ∆O and ∆α as a function of ∆U , respectively, for the five

scenarios. From Fig. 2 we find that the ∆U and ∆α of Scenarios I-A and I-C hardly suffer any change
with the perturbations. This means also that these quantities do hardly depend on the parameter ε ,
and subsequently on the common neutrino mass as given in Eq. (5.2), which is proportional to the
perturbations. We should emphasize that case I-C is an intermediate situation, somewhat artificial,
because to be near of the TBM, the two phases must have very specific values. With regard to
case I-B, from Fig. 3, it is interesting to note that small α leads to more stability. Case I-A is not

3The 1/2 in front of ∆O and ∆U is a suitable normalization factor, chosen such that, e.g. in a case where the original
Oo = 1 and the new O is such that O = O12 (or any other elementary rotation) with an angle sinθ12 = 0.2, then also
∆O ≈ 0.2, of the same order of the Cabibbo angle.
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shown, since there is no apparent change of these quantities by varying α . Therefore, we focus on
Case I-A. As shown in the previous section, generically, Scenario I-A has also the largest Majorana
phases.

However, the results for O are quite different. From Fig. 2, we see that the perturbations
generate large ∆O contributions for all cases and in particular for scenario I-A. This situation may
be improved by imposing certain restriction to Q, e.g. with some kind of symmetries. In Fig. 3,
we give an example where the perturbations Q are restricted: certain elements are taken to be zero,
while the imaginary part and the diagonal real part are taken to be 0.1 smaller than the others:

Q =

0 0 0
0 x22

10 x23

0 x23
x33
10

+
i

10

0 0 0
0 y22 y23

0 y23 y33

 (5.5)

where the x’s, y’s are random real numbers varying between -1 and 1. For the initial phase αo, we
take αo = π/9. We see that most of the deviations ∆O (from the original Oo = 1), are now around
0.2 of the order of the Cabibbo angle, and this does not affect having large values for ICP.

6. Conclusions

We proposed a new parametrization for leptonic mixing of the form V = O23 O12 Ki
α ·O and

we have identified several-limit cases with mixing angles in agreement with experimental results
and leading to large CP violation. It turns out that if neutrinos are quasi-degenerate and Majorana,
this parametrization is very useful. It may reflect some specific nature of neutrinos, suggesting that
there is some major intrinsic Majorana character of neutrino mixing and CP violation in the left
part of the parametrization, while the right part O may reflect that there are three neutrino families
with small mass differences, resulting in small mixing comparable to the quark sector, of the order
of the Cabibbo angle. Thus, from this point of view, the dominant contribution for large neutrino
mixing must come from the Majorana character of neutrinos. This new parametrization enables an
alternative perspective of large leptonic CP violation and shows interesting aspects that were less
clear in the standard parametrization. From the limit cases studied, the scenario I-A was the most
appealing. It only needs 2 extra parameters to fit the experimental results on lepton mixing and
provides large Dirac-CP violation and large values for the Majorana-CP violating phases. These
results are derived explicitly from the form of the new parametrization.

Furthermore, we also studied the stability of each scenario. We analyzed how much Uo and
Oo, i.e. the left and the right part of the parametrization, in the limit of exact degeneracy, differ
from U and O after introducing a random perturbation. We concluded that the left part of the
parametrization behaves quite differently for each scenario. It turns out that, with regard to Uo, the
scenario I-A is the most stable. As for the right part O of the parametrization, the perturbations
generate large contributions for all cases. However, we have shown how to improve this situation,
by imposing certain restrictions on the allowed perturbations.
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