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1. Introduction

The one-loop cusp anomalous dimension
Os
(05, ¢) =Cr— (pcoth —1) (1.1)

follows from the soft radiation function in classical electrodynamics: when a charge suddenly
changes its velocity, it emits electromagnetic waves; integrating the intensity over directions, one
obtains [2] ¢@coth@ — 1. This result is probably known for more than 100 years, and should be
included in The Guinness Book of Records as the anomalous dimension known for a longest time.
The two-loop term has been calculated 30 years ago [3] (and rewritten via Lij 3 in [4]). The three-
loop term has been calculated recently [5, 6, 1].

The HQET heavy-quark field anomalous dimension (or the anomalous dimension of a straight
Wilson line) is known up to 3 loops. At 2 loops, after a wrong calculation [7], the correct result has
been obtained in [8], and later in [9, 10, 11, 12]. The three-loop result has been obtained in [13, 14]
(in the first paper [13] it has been found as a by-product of the calculation of the QCD on-shell
heavy-quark field renormalization constant, from the requirement that the QCD/HQET matching
coefficient for the heavy-quark field [15] is finite; at 2 loops this has been done in [11]).

The quark—antiquark potential is known at two [16, 17] and three [18, 19, 20] loops.

Some terms in perturbative series for these quantities can be obtained to all orders in €.

2. Large ny terms

The terms with the highest power of n; at each order of perturbation theory for the cusp
anomalous dimension I" have the structures Cp(Trn f)L_IOCSL (L > 1). They are known to all or-
ders in a;. The terms with next to highest power of ny have the structures C(Trnys)t~20tF and
CFCA(Tpnf)L*ZaSL (L > 3). The abelian ones (without C4) can be also found to all orders in @.
For this purpose it is sufficient to consider QED with ny massless lepton flavors: Cp = Tr = 1,
Cyi=0,B= —%nf. Let’s introduce

(04
b=Pore @.1)

We assume b ~ 1 and take into account all powers of b; 1/fy < 1 is our small parameter, and we
consider only a few terms in expansions in 1 /.

At the leading and next-to-leading large-f3y orders (L) and NLJy), the coordinate-space Wil-
son line of any shape is equal to

longctgz.

) (2.2)

where the thick photon line is the full photon propagator with the NLf accuracy. This simple
exponentiation formula is first broken at NNLf, order by the light-by-light diagram (figure 1).
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L

Figure 1: The light-by-light diagram is n fa4, and hence NNLy.

With the NLfy accuracy the renormalization constant Z of the heavy-to-heavy current (the
cusp) is given by

logW (¢,t';0) —logW (¢,t';0) = A — T = log Z + finite (2.3)

(diagrams where both photon-interaction vertices are before the cusp, or after the cusp, cancel in
this difference). Going to momentum space, we can express it via the vertex function V(w, ®’; @)
(it is convenient to set @ = @, in order to have a single-scale problem):

V(0,0;0)—V(0,0;0) = A = — logZ + finite. 2.4)

The HQET field renormalization can be obtained from V (w, ®;0).

The static quark—antiquark potential can be considered similarly. The terms with the highest
power of ny in each order of perturbation theory have the structures Cr (Trn f)LocSLJrl (L>0). The
terms with next to highest power of 77 have the structures C# (Trn )L 'al ™ and CrCa(Trns )l Lol !
(L > 2); we’ll consider only the abelian ones. In the Coulomb gauge, up to NLJ the potential is
given by the full Coulomb photon propagator

V()= _ % ! 25
(G)=p=- —_?ﬁ(_zjz) (2.5)

(IT(¢?) is gauge invariant in QED, and can be taken from covariant-gauge calculations). This simple
equality is first broken at NNLJ order by the light-by-light diagram (figure 2).

Figure 2: The light-by-light diagram is n fot4, and hence NNLf,.

As discussed in [1], conformal symmetry leads to the relation between I'(r — &) at 6 — 0 and
V(g):

qZV(q;(xs)

A= [6T(m—8;a)] §—0 T 4g

=0 (2.6)
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(this relation has been observed in [21] at 2 loops). In QCD (and QED) conformal symmetry is
anomalous (thus leading to non-zero 3 function), and [1]

T O 4
A= BoCr ( E ) (47C4 — 28Tpnys) + O(a*). 2.7)

3. Leading 3 order

The photon self energy at the L order is ~ 1:

o) = Q g e 2 ey

(1—-¢)r 1+£)F2(1—e) 5
Dle) =" (1-2e)(1-§)r(1—2e) B G-D

The charge renormalization in the MS scheme is

Bo—2— ( W, 3¢ " = bZa(b)u. (3:2)
At the LB order we can solve the RG equation
dlogZq b
dloghb e+b
and obtain |
Zo = T5b/e" (3.3)

The vertex V(®, @; @) is given by the one-loop diagram with the factor 1/(1 —II(k?)) inserted
in the integrand. At the Lf order (figure 3) the result can be written in the form

L) = _ Ly feLE9)

where L is the number of loops and Iy (3.1) is taken at —k*> = (—2®)?. Reduction of such integrals
to master ones, as well as evaluation of these master integrals, has been considered in [22]. In

Figure 3: The L-loop vertex diagram at the Ly order contains L — 1 Iy insertions.
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Landau gauge we obtain

(1-3e)[(2—2¢)(1 —u)[(142u)
(1—e2(1—e)L(1+e)'24+u—e)

L1-u I_ZOS(P>+1] (3.5)

3/2
(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added). The

f(e,l/t;([)) = -

(2+u—2¢€)cos@ —u)-F (

function f(€,u; @) is regular at the origin:

fle,u;0) = Z Fum(@ (3.6)

n,m=0

The renormalization constant Z can be written as

7 7
logZ=—+—=+---, Z,=0(").
0gZ=""+ 5+, (")

Only Z, is needed in order to obtain
dZ(b; )
Lb;p)=-2——""=;
(b:9) dlogh

higher Z, contain no new information, and are uniquely reconstructed from Z; using self-consistency
conditions. Choosing
5
u? =D(e)V¢(—20)* = ¢3¢ (—20)?

we have

V(o,0;0)—V(0,n;0) = ﬁoi fle.Le; (p) <eib>L+ﬁ<ﬁ10> (3.7

where f(&,u; ) = f(€,u; ) — f(€,u;0). We expand in b, expand f(&,u; @) in € and u and select
only e~ ! terms in order to obtain Z;. All coefficients but fno cancel:

pcot—1 & fn el
Zi(b;0) =2 —b ,
((bi9) =272 Y (D)

where

f(e,0:0) = —2f(e)(pcoto—1), f(e)=Y fue".
Therefore at the L3y we obtain [23]

o) =4l coto —
C(b:9) = 42 0(b) (pcot 1>+ﬂ(ﬁo)

Bo
. (14 2b)T(2+20b)
W) =10 = B U+ hr( —b)

5 1 ™ 10, 1
=14+2b—=b— (2G—= | P+ =—=G—= | b*+-- 3.8
3773 <C3 3> +<30 39 3) + (38)




Leading and next to leading large ny terms Andrey Grozin

As a free bonus, we can obtain the HQET field anomalous dimension. The vertex function V
at @ = 0 is related to the HQET propagator S by the Ward identity

S 0) -5 (o)  V(0.0:0) = dS™ () .

/. _
Vo, 030) = ) dw

(3.9)
Therefore the renormalization constant of the HQET quark field Z;, is given by
logV(w,®';0) = —logZ, + finite .

Using
(1—32€)’I'(2—2¢)T'(1 —u)T'(1 4 2u)
(1—e2(1—e)T(1+e)T(24+u—e¢)’

f(S,u;O) =

we obtain in the Landau gauge [24]

b 1
W(b) = 2%%0(17) +0 <B§> ,

14 26)° T2+ 2b
Yho(b) = f(_b70;0) = (1 —‘Eb)zli3()1 +(b) ( zb)

4 5 2 Tt
=1+-b—b— (26— )PP+ |-G —= |b*+ 3.10
+3b-3 <Ca 3> +<30 3 ) (3.10)

(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added).
Now we consider the potential V(g) at the Ly order. Choosing u? = g we have

. (4m)P/2ere & ( b )L ( 1 )
\%4 — T € D(g)—— O\ = ).
D= goea & ") T\ 5
The sum here can be written as

- b g n ’n
Yoete)(15) o sen =D = ¥ gme
L=1

n,m=0

This sum is equal to

b 0
=) nlgoab"+ O(€")
€,20

(1/€" terms with n > 1 vanish, so that V(g ) is automatically finite), where

5 1 /5\"
g(0,u) = e3", 8On_n!<3> . (3.11)

Therefore ( )2
4m)= b
V(d)=——=
(q) 7 Bo

The conformal anomaly (2.6) at the LB order is

)

b) — 28 58 1/ n* 652
5o(b)—°()b2y°() 9+2<C3+ 7>b—3<7f0 1o<;3—27>b2+--- (3.13)

The first term here reproduces the Trny term in (2.7).

(b)+ﬁ<ﬁlo> Vo(b) = — . (3.12)
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4. Next to leading ) order

To obtain the photon propagator with the NLf accuracy, we need the photon self-energy up

to 1/Bo:

(k%) = Q +2® + @ :Ho(k2)+nll§(]:2)+ﬁ<ﬁl2> , 4.1)
0

where the photon propagators in IT; are taken at the Ly order. The NLf, contribution can be
written in the form [25, 26]
= F(e,Le)

I1; (k%) :38;:2 7

o (K*)E. (4.2)

Using integration by parts, one can reduce it to

2(1—2¢€)%(3—2e)I%(1 - 2¢)

Flew) = s ne-nri-arite
—3e—¢? u— eu?
X —u2 5 Srjzle(_Zg—ge) £ I(1+u—2¢)
22(1+£)(3—28)—(4+118—782)u+8(8—38)u2—8u3 C(1+u)(1—u+e)
* (I—wC—w)(l—u—)2—u—¢) T —u—e)T(1+u—2¢)
_ i o' (4.3)
n,m=0

where the integral

_ _ 1 d%ky d%k;
) = @ R /k%/%(kl +p)2(ka+ p)2 (k1 — k2)?]"

(euclidean, p2 = 1) can be expressed via a 3F, function of unit argument [27, 28] (see the re-

view [29] for more references). The 3F, function can be expanded up to any desired order using
known algorithms, the coefficients are expressed via multiple { values; therefore, the coefficients
F,m can be calculated to any desired order.
The function F(&,u) simplifies in some cases. In particular [25],
(1+¢&)(1—2¢)*(1—%€)’I(1—2¢)

Fle.0)= (1—g?(1-3e)F(1+e)3(1—¢) @4

so that F,,o contain no multiple { values, only §,. Also [26]

2y (2 v (Hs) v (55 + v ()

F(0,u) 3 =0 —u 4.5)
so that Fy,, contains only {,,.1 [26]:
32 [(m+1)/2] ' ' 4
Fom == Y s(1-27)(1-227"2) G + S m+1) (m+ (m+ 6)27"7) . (4.6)

s=1
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The two-loop case is, of course, trivial:

F(g,2¢) = —2+4¢e—2¢>

2 3-2¢e[_(1-2¢)?(2—2e+¢€%) T(1+2&)(1-2e¢)
9¢2 1—¢ { (1-3¢)(2—3¢) TI?(14+&)I(1—¢e)(1-3¢)

Let’s write the charge renormalization constant Z, with the NLf, accuracy as

Zo(b) = — {1+Za1(b)+ﬁ< I >]

1+b/e Bo B2
Zor(b) = Zal;(b)_'_zal;z(b)_i_.“’ Zatn = O™, @

In the abelian theory, log(1 —IT) expressed (3.2) via renormalized b should be equal to logZ, +
finite. Equating the coefficients of e linthe 1 /Bo terms in this relation, we see that Zy; (4.7) is

—<1+b>H1.
S

W2 =D(e) VE(—IP) = 3 (),

given by the coefficient of £~! in

It is convenient to choose

then

F(g,Le) b \*
H1_382 (Hb) :

We expand in b and expand F (&, u) in € and u; selecting £~ terms, we find that all coefficients but

F,o cancel:
oo F,0 ( _ b)n+2

Zann=-3y 2~~~ 4.8
The B function with NLf, accuracy is
Bi(b) 1
B(b)=b+ +0( =), 4.9)
(®) Bo Bs
where [25, 26]
dZg11(b) = Fuo(—b)"?
b :—7:3 _—
hub) dlogb ;) n+1
11 107 1 /n* 251
=3+ —b— b4—f 3G+ — | b+ = 11 =)o+ 4.10
47 36 2<C3+48> +5<1o C3+48> i (+10)

(the coefficients F, follow from F(€,0) (4.4)). The corresponding terms in the 5-loop QED f
function [30] are reproduced. We shall need the full Zy, not just Zy1; integrating the RG equation
with the 1/ accuracy we obtain

37 1 » o1 b*
Z — S — = (44 Fi08) = — ~ (94 3F10e + Fa€?) = +---
a /b£+b 2£+2(+m)82 4(Jr 108120 )e3+
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At the NLf order we should expand the photon propagator (1 — Iy —I1;/By) ! up to 1/
(Fig. 4). The vertex function (3.7) becomes

- F T 3
V(o,0;9) —V(o,0;0) = 1 y f(e,Le; o) (8 b b)

L-17 7/
Zay | €N LTL v L) (4.11)
By

) [1+L24 22y Z 2 pe e
Bo ﬁong el )

where L' is the number of loops in the I1; insertion, and the 1/f, correction Z, to the charge
renormalization (4.7) is taken into account. We expand in b and substitute the expansions (4.3)
and (3.6); in Z;, the coefficient of €1, all fam except f,o cancel. At the NLfy order the cusp
anomalous dimension is determined by the same f, coefficients as at the L, order:

b’ 1
Cb:0) =4 | 20 0) — 2 1) (9ot - 1>+ﬁ(3) , “.12)
0 0 ﬁo

where

3 A o o
" (b) = _E [F10+2F()] —2f]] + [2F20+3(F11 +F02) +3Fo1 f1 —6f2]b

3 A 3 A N
- Z(3F30 +4(F21 + Fio + Foz)) + (Fao + 3(Fit + Fo2) ) f1 — 2 (Fio—2Fo1) fo—9f3|p*+ -+

Figure 4: NLf order diagrams contain one IT; insertion (with any number of ITj insertions inside) and any
number of Iy insertions to the left and to the right of it.
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Substituting F;,,, we obtain

55 299
n(b) = 12C3_*+ (_7;+40C3_18)b

+<24C5—§7r4 @é 1§2i1>b2

+<—48C32 623 +80¢5— g ! 116853—31(0
+<36C7+57I4C3—16OC32—12809”6+3;7 5—% ' %53 ?2%)
+( 240§3Cs—2475” +120§7+16 453—%‘:3 3991649%6

6826 1793 31693 79433
S 1330" 315 9 aam )bs
This expansion can be extended to any number of loops. The first term in (4.13) agrees with the
C[% Trny term in the three-loop result [5, 6, 1]. The next term coincides with the C%(Tpn f)zocf term
in I" recently calculated in [31]. Note that the last (8-loop) term here contains F;,,, with n+m = 6,

n >0, m > 0, which contain (s 3; but they enter as the combination Fs; + Fy + F33 + Fo4 + Fi5 in
which this s 3 cancels.

(4.13)

Similarly, the field anomalous dimension in Landau gauge at the NLj order is

Th(b) = —6 L?O?’h()(b) - b;?’hl(b)} +0 ([%) :

Y (b) = (4@; - 17) + <—7;4 +368; — ?)b

: (24@ T lggjf)bz
! (36@7 Fymh b %” 10765 - 232”4+ 9168001 GF 282684509>b4
- ( 2408385 — Eﬂ + 10887 + *754C3 - @Q - % °

The first term here coincides with the C2Trn ¢ term in the three-loop result obtained by a direct

calculation [13, 14]. The last term contains the same combination of F;,,, with n +m = 6, so that
s 3 cancels.

The static potential at the NLf level is

N G- b \* Zoy BeREL-L L
V(g) = ﬁoqzst_:lg(e,Le)<€+b> 1+Lﬁ0 ﬁoL,z::ZT F(e,L'e) +ﬁ<ﬁo>
2 3
-4 [ o]+ (3)
0
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where

3 1
Vi(b) = —3 [Fio+2Fo1 +2g01] + 3 [F0 — 6Fp — 6 (Fio+3Fo1) go1 — 30g02] b

1
2 [F30 4 24Fo3 — 4 (Fao + 12Fy) go1 + 36 (Fio +4Fo1 ) o2 + 312803 b 4

contains only the same coefficients g, (3.11) as the L result, and only F;o and Fp,, are involved
(see (4.4-4.6)). We obtain

55 7001 723 147851
Vi(b )—12C3—+<78C3—>b+<60€5+2C3— )bz

72 288
+ (770C5+ i 27168900143—70;519829023> ’
n (113 4ty + 32297 bt 1:(1)0”4+ 402379 G 124797571600621) 4
 (oraser e i PP e+ S - KR )

(4.16)

Thus we have reproduced the Cr(Trns)?a? and CzTrnge terms in the two-loop potential [17],
as well as the Cr(Trns) o} and C2(Trny)*ay terms in the three-loop one [18]. This expansion
can be extended to any order; it contains only {, because only F,o and Fy,, are present. Note the
pattern of the highest weights in (4.16): 3, 3, 5, 5, 7, 7, whereas one would expect 3, 4, 5, 6, 7, 8,
as in (4.13), (4.14). The conformal anomaly (2.6) at the NLf order is

s=sx pao—gao] <o ().
nt 645 ( 2 968 114691)

8 (b) = ?+38C3 S + (3685 += 7v+—C3 16

269 52577 14062811
4 e o _ 2
+< 863 + 7r +690§5+36O +¢ G =184 )
20 , 95006, 2801 , 198917 . 39035933
10988, — —n* &3+ 160 n® 4 — 3
+< 986 ” G 1605 + 157"+ =565+ Tggp™ T30 &~ 2430 >
16 397, 131
24 — 4216154 — — G+ —=— nt
+ ( 0C3C5+ 2257T +216 5C7 C3 C3 567

4.17)

8386994, n 149597c4 34793081C 51287121209 b
18 =" 10800 1080 = 466560

The b° / [302 term has canceled, so that the coefficient of Cr in the bracket in (2.7) is 0.

5. Conclusion

The terms with the highest powers of n at each order of perturbation theory (Cr(Trn f)L*1 ak

inT, 73 CF(Tpnf) alt!in V(§)) are known, and given by explicit formulas (3.8), (3.10), (3.12).
The terms with the next to highest power of n; can have abelian (C,%-) or non-abelian (CrCy) color

10



Leading and next to leading large ny terms Andrey Grozin

structure. The abelian terms (Cz(Trns)l"2al (L >3)in T, y; C#(Trng)tlal ™ (L > 2) in V(§))
are also known to all orders in ¢, but only as algorithms which allow one to obtain (in principle)
any number of terms, see (4.13), (4.14), (4.16). The simple method used here is not applicable to
non-abelian terms.

I am grateful to J. M. Henn, G.P. Korchemsky, P. Marquard for collaboration [5, 6, 1]; to
D.J. Broadhurst for explaining the methods of [26] and useful discussions; to A. Vogt for compar-
ing the result [31] with (4.13) during the conference. Many thanks to the organizers of Loops and
Legs 2016. I am grateful to MITP and M. Neubert for hospitality in Mainz and financial support.
Partial support from the Russian Ministry of Education and Science is acknowledged.
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