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1. Introduction

Precise predictions of the production cross sections at the Large Hadron Collider are necessary
to gain a quantitative understanding of the Standard Model signals and background. To match the
experimental precision and the parton distribution function uncertainties, this typically requires
computations at next-to-next-to leading order in fixed-order perturbation theory. Calculations at
this order are challenging due to the large number of contributing Feynman diagrams, involving
loop integrals with high powers of loop momenta in the numerator of the integrand.

A key tool in these computations are integration-by-parts (IBP) identities [1, 2]. These are
relations that arise from the vanishing integration of total derivatives. Schematically, they take the
form, ∫ L

∏
i=1

dD`i

πD/2

L

∑
j=1

∂

∂`
µ

j

vµ

j P

Da1
1 · · ·D

ak
t

= 0 , (1.1)

where P and the vectors vµ

j are polynomials in the internal and external momenta, the Dk denote
inverse propagators, and ai ≥ 1 are integers. In practice, the IBP identities generate a large set of
linear relations between loop integrals, allowing a significant fraction to be reexpressed in terms of
a finite basis of integrals. (The fact that the basis of integrals is always finite was proven in ref. [3].)
The latter step of solving the linear systems arising from eq. (1.1) may be done by Gauss-Jordan
elimination in the form of the Laporta algorithm [4, 5], leading in general to relations involving
integrals with squared propagators. There are several publically available implementations of au-
tomated IBP reduction: AIR [6], FIRE [7, 8], Reduze [9, 10], LiteRed [11], in addition to private
implementations. An approach for deriving IBP reductions without squared propagators was de-
veloped in ref. [12]. A recent approach [13] uses numerical sampling of finite-field elements to
construct the reduction coefficients.

In addition to reducing the contributing Feynman diagrams to a small set of basis integrals, the
IBP reductions provide a way to compute these integrals themselves via differential equations [14,
15, 16, 17, 18, 19, 20]. Letting xm denote a kinematical variable, ε = 4−D

2 the dimensional regulator,
and I (x,ε) =

(
I1(x,ε), . . . ,IN(x,ε)

)
the basis of integrals, the result of differentiating a basis

integral wrt. xm can be written as a linear combination of the basis integrals by using, in practice,
the IBP reductions. As a result, one has a linear system of differential equations,

∂

∂xm
I (x,ε) = Am(x,ε)I (x,ε) , (1.2)

which, supplied with appropriate boundary conditions, can be solved to yield expressions for the
basis integrals. This method has proven to be a powerful tool for computing two- and higher-loop
integrals. IBP reductions thus play a central role in perturbative calculations in particle physics.

In many realistic multi-scale problems, such as 2→ n scattering amplitudes with n ≥ 2, the
step of generating IBP reductions with existing algorithms is the most challenging part of the
calculation. It is therefore interesting to explore other approaches to generating these reductions.

In these proceedings we explain how IBP reductions can be efficiently obtained by applying
unitarity cuts to a specific set of subgraphs and solving associated polynomial (syzygy) equations.
We remark that the references [21, 22] also consider cuts applied to IBP relations and their geo-
metric meaning.
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2. Setup

Throughout these proceedings, we will focus on the case of two-loop integrals. We will denote
the number of external legs of a given two-loop integral by n, and the number of propagators by k.
(Note that, after integrand reduction, k ≤ 11.) We work in dimensional regularization and use the
four-dimensional helicity scheme, taking the external momenta in four dimensions.

Our first aim is to recast two-loop integrals in a parametrization which is useful for deriving
IBP relations. The first step is to decompose the loop momenta into four- and (D−4)-dimensional
parts, `i = `i + `⊥i , i = 1,2. Next, parametrize the extra-dimensional vectors `⊥i in hyperspherical
coordinates, using their norms µii ≡ −(`⊥i )2 ≥ 0 and relative angle µ12 ≡ −`⊥1 · `⊥2 . After this
transformation, the two-loop integral takes the form

I(2)n≥5 =
2D−6

π5Γ(D−5)

∫
∞

0
dµ11

∫
∞

0
dµ22

∫ √
µ11µ22

−√µ11µ22

dµ12
(
µ11µ22−µ

2
12
)D−7

2

∫
d4`1 d4`2

P(`1, `2)

D1 · · ·Dk
.

(2.1)

For n ≥ 5 there are 11− k irreducible scalar products (ISPs) which we denote by g j where j =
1, . . . ,11− k. We can then define variables z1, . . . ,z11 as follows,

zi ≡

{
Di 1≤ i≤ k

gi−k k+1≤ i≤ m ,
(2.2)

with m = 11 for n≥ 5. The transformation { ¯̀i,µi j}→ {z1, . . . ,z11} is invertible, with a polynomial
inverse (provided the g j are chosen to take the form 1

2(`i +K j)
2, rather than linear dot products of

the `i), and has a constant Jacobian. The integral (2.1) then becomes,

I(2)n≥5 =
2D−6

π5Γ(D−5)J

∫ 11

∏
i=1

dzi F(z)
D−7

2
P(z)

z1 · · ·zk
, (2.3)

where F(z) denotes the kernel (µ11µ22−µ2
12) expressed in the zi, in which it is polynomial.

The representation (2.3) is valid for n ≥ 5 external legs. For lower multiplicities, the loop
momenta have components which can be integrated out before the transformation (2.2) is applied.
For example, for n = 4, by momentum conservation, there are only three linearly independent
external momenta, and we can find an orthogonal vector ω; that is, pi ·ω = 0 where i = 1, . . . ,4.
Integrating out the components `i ·ω in eq. (2.1) and subsequently applying the transformation
(2.2) yields,

I(2)n=4 =
2D−5

π4Γ(D−4)J

∫ 9

∏
i=1

dzi F(z)
D−6

2
P(z)

z1 · · ·zk
. (2.4)

We observe that the spacetime dimensions appearing here have been shifted down by one relative
to eq. (2.3); that is, D−Dc → D− (Dc− 1). This is consistent with the fact that the span of the
external momenta has one dimension less. For notational convenience we will drop the prefactors
in front of the integral signs in eqs. (2.3) and (2.4). We note that the representations (2.3) and (2.4)
have also been considered in the literature by Baikov, see for example ref. [23].
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3. Integration-by-parts reductions on generalized-unitarity cuts

The key idea of our approach is to derive IBP identities on generalized-unitarity cuts where
some subset S of propagators are put on shell: D−1

i → δ (Di) with i ∈ S. In essence, the applica-
tion of cuts divide the task of finding IBP reductions into several smaller, and more manageable,
problems. This is because, on a given cut S, only integrals which contain all of the propagators in S
contribute (since the remaining integrals are missing the pole whose residue the cut is computing).
As the resulting IBP identities will miss contributions from some of the basis integrals, we must
construct the identities on a set of cuts S1, . . . ,SC and merge the partial results. Below we explain
how to construct IBP identities on a given cut S and how to choose an appropriate spanning set of
cuts.

Let us consider a cut where c propagators are put on shell (0≤ c≤ k). We label the propagators
of the graph (cf. the labelling, e.g., in Fig. 1) and let Scut, Suncut and SISP denote the sets of indices
labelling cut propagators, uncut propagators and ISPs, respectively. Scut thus contains c elements.
Furthermore, we let m denote the total number of z j variables, and set Suncut = {r1, . . . ,rk−c} and
SISP = {rk−c+1, . . . ,rm−c}. Then, after cutting the propagators, z−1

i → δ (zi), i ∈Scut, the integrals
(2.3) and (2.4) reduce to,

I(2)cut =
∫ dzr1 · · ·dzrm−cP(z)

zr1 · · ·zrk−c

F(z)
D−h

2

∣∣∣∣
zi=0 ,∀i∈Scut

, (3.1)

where h depends on the number of external legs: h = 6 for n = 4 and h = 7 for n≥ 5.
Now we turn to the problem of writing down IBP relations. An IBP relation (1.1) that concerns

integrals with m integration variables corresponds to a total derivative, or equivalently an exact
differential form, of degree m. Here we are interested in the c-fold cut of the IBP relation, where
the propagators of Scut are put on shell in all terms (and integrals which do not contain all of these
propagators are set to zero). Such c-fold cut relations correspond to exact differential forms of
degree m− c. The generic exact form that matches the form of the integrand in eq. (3.1) is,

0 =
∫

d
(m−c

∑
i=1

(−1)i+1ariF(z)
D−h

2

zr1 · · ·zrk−c

dzr1∧·· ·∧ d̂zri ∧·· ·∧dzrm−c

)
(3.2)

where the ai’s are polynomials in {zr1 , . . . ,zrm−c}. Writing out eq. (3.2) more explictly, we get the
IBP relation,

0 =
∫ (m−c

∑
i=1

(
∂ari

∂ zri

+
D−h

2F
ari

∂F
∂ zri

)
−

k−c

∑
i=1

ari

zri

)
F(z)

D−h
2

zr1 · · ·zrk−c

dzr1 ∧·· ·∧dzrm−c . (3.3)

Now, for generic ai, the second term in the sum corresponds to an integrand in (D−2) dimensions.
This is because the factor F in the denominator divides against the integration measure F(z)

D−h
2 and

thereby shifts D→D−2 in the exponent. Likewise, the third term generates integrals with doubled
propagators. To get an IBP relation that involves only integrals in D dimensions with single-power
propagators, we require the ai to be such that the second and third terms of (3.3) are polynomial
rather than rational,

bF +
m−c

∑
i=1

ari

∂F
∂ zri

= 0 (3.4)

ari +brizri = 0 , i = 1, . . . ,k− c , (3.5)
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where ari , b and bri must be polynomials in z j. Equations of this type are known in algebraic
geometry as syzygy equations. They have been considered in the context of IBP relations in
refs. [12, 24, 22]. In practice, the equations (3.4)–(3.5) can be solved with computational alge-
braic geometry software, such as Singular [25]. The corresponding IBP identities are then obtained
by plugging the solutions into eq. (3.3). In this way, we find IBP identities on the cut Scut.

To find an appropriate set of cuts on which to reconstruct the IBP reductions, we first find a
basis of integrals. We perform this step without applying cuts and using rational numbers or finite-
field element values for the kinematical invariants and spacetime dimension. Applying Gauss-
Jordan elimination to the resulting set of IBP identities with some chosen ordering on the set of
integrals then produces a basis of integrals. (Similar ideas for finding a basis of integrals have
appeared in ref. [26], using random prime numbers for the external invariants and spacetime di-
mension, and in ref. [27], using finite-field elements.) In the example in the next section we explain
how the set of cuts is obtained from the basis of integrals. Having obtained an appropriate set of
cuts, we proceed analytically and construct IBP reductions on each cut in turn. Finally, we merge
the results obtained from the cuts to find complete IBP reductions.

4. Example

To demonstrate the method, we consider the example of a planar double-box integral with all
legs and propagators massless, illustrated in Fig. 1. For this integral we have k = 7, and the inverse
propagators can be parametrized as,

D1 = `2
1 , D2 = (`1− p1)

2 , D3 = (`1− p1− p2)
2

D4 = (`2− p3− p4)
2 , D5 = (`2− p4)

2 , D6 = `2
2 , D7 = (`1 + `2)

2 . (4.1)

As mentioned above eq. (2.2), the generic integral of this topology will have numerator insertions
which are monomials in two distinct ISPs. The ISPs may be chosen as,

D8 =
1
2
(`1 + p4)

2, D9 =
1
2
(`2 + p1)

2 . (4.2)

Our aim is now to show how the IBP reductions of an integral with the propagators in eq. (4.1) with
a generic numerator insertion can be obtained. After the change of variables { ¯̀i,µi j}→{z1, . . . ,z9}
discussed in section 2, the double-box integral takes the form of eq. (2.4).

We will use the following notation for the integrals,

G[n1, . . . ,n9]≡
∫ 9

∏
i=1

dzi F(z)
D−6

2 zn1
1 · · ·z

n9
9 . (4.3)

Now, to find the IBP reductions of these integrals, the first step is to find a basis of integrals.
This is done by solving the syzygy equations (3.4)–(3.5) without imposing cuts while using nu-
merical external kinematics (with rational numbers or finite-field elements), and then inserting all
solutions into the right-hand side of eq. (3.3), and finally performing Gauss-Jordan elimination
with some chosen ordering on the set of integrals. In the case at hand, we find the following set of

4
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Figure 1: The massless double-box diagram, along with our labelling conventions for its internal lines, is
shown on the left. The right part shows the subset of the master integrals in eq. (4.4) with the property that
their graphs cannot be obtained by adding internal lines to the graph of some other master integral. The
corresponding cuts {2,5,7}, {1,4,7}, {2,4,6,7} and {1,3,4,6} are the cuts required for deriving complete
IBP relations of integrals with this double-box topology.

master integrals (after modding out by symmetries)

I1 ≡ G[−1,−1,−1,−1,−1,−1,−1,0,0]
I2 ≡ G[−1,−1,−1,−1,−1,−1,−1,1,0]
I3 ≡ G[0,−1,−1,0,−1,−1,−1,0,0]
I4 ≡ G[0,−1,0,−1,0,−1,−1,0,0]
I5 ≡ G[−1,0,−1,−1,0,−1,0,0,0]
I6 ≡ G[0,−1,0,0,−1,0,−1,0,0]
I7 ≡ G[−1,0,0,−1,0,0,−1,0,0]
I8 ≡ G[−1,−1,−1,0,−1,0,−1,0,0] .

(4.4)

Having obtained a basis of integrals, we proceed to find the IBP reductions analytically on a set
of cuts and then merging the results to find the complete reductions. To decide on the minimal
set of cuts required, we select those basis integrals with the property that their graphs cannot be
obtained by adding internal lines to the graph of some integral in the basis. In the present case,
this subset is {I4,I5,I6,I7}, shown in Fig. 1. Hence, we only need to consider the four cuts
{2,5,7}, {1,4,7}, {2,4,6,7} and {1,3,4,6} to find the complete IBP reductions.

To illustrate how to find the IBP reductions on a given cut, let us consider the three-fold
cut Scut = {2,5,7}. Here, Suncut = {1,3,4,6} and SISP = {8,9}. The kernel F on the cut is
polynomial in z1, z3, z4, z6, z8 and z9. The syzygy equations (3.4)–(3.5) read,

bF + ∑
i∈{1,3,4,6,8,9}

ai
∂F
∂ zi

= 0 and a j +b jz j = 0 , j ∈ {1,3,4,6} , (4.5)

where b,bi,a j are to be solved for as polynomials in zk. A generating set of solutions of eq. (4.5) can
be found via algebraic geometry software such as Singular in seconds (with analytic coefficients).
Now, given a solution (b,bi,a j), any multiple (qb,qbi,qa j), with q a polynomial, is manifestly also
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a solution. To capture the IBP reductions of all possible numerator insertions, we thus consider
all syzygies (b,bi,a j) multiplied by appropriate monomials in the ISPs, q = ∏i∈{1,3,4,6,8,9}Dai

i .
Inserting all such solutions into the right-hand side of eq. (3.3) produces the complete set of IBP
relations, without doubled propagators, on the cut {2,5,7} (i.e., up to integrals that vanish on this
cut).

As an example, consider the tensor integral T ≡ G[−1,−1,−1,−1,−1,−1,−1,0,2]. On the
four cuts specified above this integral reduces to, respectively,

T
∣∣
{2,5,7} = ∑

j∈{1,2,3,6,8}
c jI j , T

∣∣
{1,4,7} = ∑

j∈{1,2,7}
c jI j , (4.6)

T
∣∣
{2,4,6,7} = ∑

j∈{1,2,4}
c jI j , T

∣∣
{1,3,4,6} = ∑

j∈{1,2,5}
c jI j , (4.7)

where, denoting χ ≡ t/s, the coefficients are found to be,

c1 =
(D−4)s2χ

8(D−3)
, c2 =−

(3D−2χ−12)s
4(D−3)

, c3 =
(4−D)(9χ +7)

4(D−3)
(4.8)

c4 =
(10−3D)(2χ−13)

8(D−4)s
, c5 =

2D(χ +1)−8χ−7
2(D−4)s

, c6 =
9(3D−10)(3D−8)

4(D−4)2s2χ
(4.9)

c7 =
(3D−10)(3D−8)(2χ +1)

2(D−4)2(D−3)s2 , c8 = 2 . (4.10)

The integrals absent from the right-hand sides of eqs. (4.6)–(4.7) vanish on the respective cuts.
Combining these results, we get the complete IBP reduction of the tensor integral,

T =
8

∑
j=1

c jI j . (4.11)

We have implemented the algorithm as a program, powered by Mathematica and Singular [25]. It
analytically reduces all integrals with numerator rank ≤ 4, to the eight master integrals in eq. (4.4)
in about 39 seconds in the fully massless case, and to 19 master integrals in about 162 seconds in
the one-massive-particle case (on a laptop with 2.5 GHz Intel Core i7 and 16 GB RAM).

One important feature of the approach is the use of the zi-variables in eq. (2.2) which ultimately
lead to the simple form of the syzygy equations (3.4)–(3.5). However, the crucial feature is the use
of generalized-unitarity cuts: they eliminate variables in the syzygy equations so that these can be
solved more efficiently. More importantly, because on any given cut, only a subset of basis integrals
contribute, the cuts have the effect of “block-diagonalizing” the linear system of IBP identities on
which Gauss-Jordan elimination is performed to find the IBP reductions.

There are several directions for future research. Of particular interest are extensions to higher
multiplicity, several external and internal masses, non-planar diagrams, and higher loops.
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