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Being the naturalness problem one of the main motivations for supersymmetric theories, it is rea-
sonable to explore supersymmetric phenomenology focusing on scenarios where the fine-tuning
is as mild as possible. Models in which the fine-tuning is kept under control are known as “Nat-
ural SUSY" ones. We re-examine here this issue in the context of the MSSM including several
improvements, such as the mixing of the fine-tuning conditions for different soft terms and the
presence of potential extra fine-tunings that must be combined with the electroweak one. We
analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any
high-energy (HE) scale. We show that Natural SUSY does not demand light stops. Regarding
phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass,
which typically sets the present level fine-tuning at O(1%). However, this result presents a strong
dependence on the HE scale. E.g. if the latter is 107 GeV the level of fine-tuning is ∼ four times
less severe. The most robust result of Natural SUSY is by far that Higgsinos should be rather
light, certainly below 700 GeV for a fine-tuning of O(1%) or milder. Finally, as an application,
we evaluate the fine-tuning in the minimal Gauge-mediated SUSY breaking model
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1. The “standard" Natural SUSY

Naturalness arguments have been used since long ago [1] to constrain from above supersym-
metric masses1. Already in the LHC era, they were re-visited in ref. [4] to formulate the so-called
Natural SUSY scenario, that we summarize here. Assuming that the extra (supersymmetric) Higgs
states are heavy enough, the Higgs potential can be written in the Standard Model (SM) way

V = m2|H|2 +λ |H|4 , (1.1)

where the SM-like Higgs doublet, H, is a linear combination of the two supersymmetric Higgs dou-
blets, H ∼ sinβHu+cosβHd . Then, the absence of fine-tuning can be expressed as the requirement
of not-too-large contributions to the Higss mass parameter, m2. Since the physical Higgs mass is
m2

h = 2|m2|, a sound measure2 of the fine-tuning is [5]

∆̃ =

∣∣∣∣δm2

m2

∣∣∣∣= 2δm2

m2
h

. (1.2)

For large tanβ , the value of m2 is given by m2 = |µ|2 +m2
Hu

, so one immediately notes that both µ

and mHu should be not-too-large in order to avoid fine-tuning. For the µ−parameter this implies

µ <∼ 200GeV
( mh

120GeV

)(
∆̃−1

20%

)−1/2

. (1.3)

This sets a constraint on Higgsino masses. Constraints for other particles come from the radiative
corrections to m2

Hu
. The most important contribution comes from the stops. Following ref. [4]

δm2
Hu
|stop =−

3
8π2 y2

t
(
m2

Q3
+m2

U3
+ |At |2

)
log
(

Λ

TeV

)
, (1.4)

where Λ denotes the scale of the transmission of SUSY breaking to the observable sector and the
1-loop leading-log (LL) approximation was used to integrate the renormalization-group equation
(RGE). Then, the above soft parameters m2

Q3
, m2

U3
and At are to be understood at low-energy, and

thus they control the stop spectrum. This sets an upper bound on the stop masses. In particular one
has √

m2
t̃1
+m2

t̃2
. 600GeV

sinβ

(1+ x2)1/2

(
log(Λ/TeV)

3

)−1/2(
∆̃−1

20%

)−1/2

, (1.5)

where x = At/
√

m2
t̃1
+m2

t̃2
. Eq. (1.5) imposes a bound on the lightest stop. Besides the stops, the

most important contribution to mHu is the gluino one, due to its large 1-loop RG correction to the
stop masses. Again, in the 1-loop LL approximation used in ref. [4], one gets

δm2
Hu
|gluino '−

2
π2 y2

t

(
αs

π

)
|M3|2 log2

(
Λ

TeV

)
, (1.6)

1For a partial list of references on naturalness in SUSY, see ref. [2, 3]
2This measure produces similar results to the somewhat standard parametrization of the fine-tuning, see eq.(3.3)

below.
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where M3 is the gluino mass. From the previous equation,

M3 . 950GeVsinβ

(
log(Λ/TeV)

3

)−1( mh

125GeV

)(
∆̃−1

20%

)−1/2

. (1.7)

Altogether, the summary of the minimal requirements for a natural SUSY spectrum, as given
in ref. [4], is: i) two stops and one (left-handed) sbottom, both below 500− 700 GeV, ii) two
Higgsinos, i.e., one chargino and two neutralinos, below 200− 350 GeV, iii) a not too heavy
gluino, below 900 GeV−1.5 TeV.

In the next section we point out the weak points of the above arguments that support the
‘standard" Natural SUSY scenario. Some of them have been addressed in the literature after ref. [4].

2. The Natural SUSY scenario. A critical review

2.1 The dependence on the initial parameters

The one-loop LL approximation used to write eqs.(1.5, 1.6), from which the naturalness
bounds were obtained, is too simplistic in two different aspects.

First, it is not accurate enough since the top Yukawa-coupling, yt , and the strong coupling, αs,
are large and vary a lot along the RG running. As a result, the soft masses evolve greatly and cannot
be considered as constant, even as a rough estimate. This effect can be incorporated by integrating
numerically the RGE, which corresponds to summing the leading-logs at all orders [6, 7].

Second, and even more important, the physical squark, gluino and electroweakino masses are
not initial parameters, but rather a low-energy consequence of the initial parameters at the high-
energy scale. Notice that there is not one-to-one correspondence between the initial parameters and
the physical quantities, since the former get mixed along their coupled RGEs. Consequently, it is
not possible in general to determine individual upper bounds on the physical masses, not even on the
initial parameters. Instead, one should expect to obtain contour-surfaces with equal degree of fine-
tuning in the parameter-space and, similarly, in the “space" of the possible supersymmetric spectra.
A second complication is that the results depend (sometimes critically) on what one considers as
initial parameters.

From the previous discussion it turns out that the most rigorous way to analyze the fine-tuning
is to determine the full dependence of the electroweak scale (and other potentially fine-tuned quan-
tities) on the initial parameters, and then derive the regions of constant fine-tuning in the parameter
space. These regions can be (non-trivially) translated into constant fine-tuning regions in the space
of possible physical spectra. This goal is enormously simplified if one determines in the first place
the analytical dependence of low-energy quantities on the high-energy initial parameters.

2.2 Fine-tunings left aside

In a MSSM scenario, there are two implicit potential fine-tunings that have to be taken into
account to evaluate the global degree of fine-tuning. They stem from the need of having a physical
Higgs mass consistent with mexp

h ' 125 GeV and from the requirement of rather large tanβ . Let us
comment on them in order.
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Fine-tuning to get mexp
h ' 125 GeV

As is well known, the tree-level Higgs mass in the MSSM is given by (m2
h)tree−level =M2

Z cos2 2β ,
so both large tanβ values and radiative corrections are needed in order to reconcile it with the ex-
perimental value. A simplified expression of such corrections [8, 9, 10], useful for the sake of the
discussion, is

δm2
h =

3GF√
2π2

m4
t

(
log
(

m2
t̃

m2
t

)
+

X2
t

m2
t̃

(
1− X2

t

12m2
t̃

))
+ · · · , (2.1)

with mt̃ the average stop mass and Xt = At−µ cotβ . The Xt-contribution arises from the threshold
corrections to the quartic coupling at the stop scale. This correction is maximized for Xt =

√
6mt̃ .

Notice that if the threshold correction were not present one would need heavy stops [11] for large
tanβ , which is inconsistent with the requirements of Natural SUSY in its original formulation.
However, taking Xt close to the “maximal" value, it is possible to obtain the correct Higgs mass
with rather light stops, even in the 500−700 GeV range; a fact frequently invoked in the literature
to reconcile the Higgs mass with Natural SUSY.

On the other side, requiring Xt ∼ maximal entails an additional fine-tuning that has to be
properly taken into account.

Fine-tuning to get large tanβ

The value of tanβ ≡ 〈Hu〉/〈Hd〉 is given, at tree level, by

2
tanβ

' sin2β =
2Bµ

m2
Hd

+m2
Hu

+2µ2 =
2Bµ

m2
A

, (2.2)

where mA is the mass of the pseudoscalar Higgs state; all the quantities above are understood to
be evaluated at the low-scale. Clearly, in order to get large tanβ one needs small Bµ at low-
energy. However, even starting with vanishing B at MX one gets a large radiative correction due
to the RG running. Consequently, very large values of tanβ are very fine-tuned3, as they require
a cancellation between the initial value of B and the radiative contributions. On the other hand,
moderately large values may be non-fined-tuned, depending on the size of the RG contribution to
Bµ and the value of mA. Hence, a complete analysis of the MSSM naturalness has to address this
potential source of fine-tuning.

3. The electroweak fine-tuning of the MSSM

Natural SUSY in the MSSM requires large tanβ values, otherwise the radiative corrections
needed to reconcile the Higgs mass with its experimental value, would imply gigantic stop masses
[11]. In this large limit, the minimization relation reads:

− 1
8
(g2 +g′2)v2 =−M2

Z

2
= µ

2 +m2
Hu

. (3.1)

The two terms on the r.h.s have opposite signs and their absolute values are typically much larger
than M2

Z , hence the potential fine-tuning associated to the electroweak breaking.
3The existence of this fine-tuning was first observed in ref. [12, 13] and has been discussed, from the Bayesian point

of view in ref. [14].
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It is well-known that the radiative corrections to the Higgs potential reduce the fine-tuning
[15]. This effect can be included taking into account that the effective quartic coupling of the SM-
like Higgs runs from its initial value at the SUSY threshold, λ (Qthreshold) =

1
8(g

2 + g′2), until its
final value at the electroweak scale, λ (QEW ). The effect of this running is equivalent to replacing
M2

Z → m2
h in eq.(3.1) above, i.e.

−
m2

h
2

= µ
2 +m2

Hu
, (3.2)

which is the expression from which we will evaluate the electroweak fine-tuning in the MSSM.
It is a common practice to quantify the amount of fine-tuning using the parametrization first

proposed by Ellis et al. [16] and Barbieri and Giudice [1], which in our case reads

∂m2
h

∂θi
= ∆θi

m2
h

θi
, ∆≡Max |∆θi | , (3.3)

where θi is an independent parameter that defines the model under consideration and ∆θi is the fine-
tuning parameter associated to it 4. Typically θi are the initial (high-energy) values of the soft terms
and the µ parameter. Nevertheless, for specific scenarios of SUSY breaking and transmission to
the observable sector, the initial parameters might be particular theoretical parameters that define
the scenario and hence determine the soft terms.

3.1 Generic expression for the fine-tuning

Clearly, in order to use the standard measure of the fine-tuning (3.3) it is necessary to write
the r.h.s. of the minimization equation (3.2) in terms of the initial parameters. This in turn im-
plies to write the low-energy values of m2

Hu
and µ in terms of the initial, high-energy, soft-terms

and µ−term (for specific SUSY constructions, these parameters should themselves be expressed
in terms of the genuine initial parameters of the model). Low-energy (LE) and high-energy (HE)
parameters are related by the RG equations, which normally have to be integrated numerically.
However, it is extremely convenient to express this dependence in an exact, analytical way. Fortu-
nately, this can be straightforwardly done, since the dimensional and analytical consistency dictates
the form of the dependence,

m2
Hu
(LE) = cM2

3
M2

3 + cM2
2
M2

2 + cM2
1
M2

1 + cA2
t
A2

t + cAt M3AtM3 + cM3M2M3M2 + · · ·

· · ·+ cm2
Hu

m2
Hu

+ cm2
Q3

m2
Q3

+ cm2
U3

m2
U3

+ · · · (3.4)

µ(LE) = cµ µ , (3.5)

where Mi are the SU(3)× SU(2)×U(1)Y gaugino masses, At is the top trilinear scalar coupling;
and mHu ,mQ3 ,mU3 are the masses of the Hu−Higgs, the third-generation squark doublet and the stop
singlet respectively, all of them understood at the HE scale. The numerical coefficients, cM2

3
,cM2

2
, ...

are obtained by fitting the result of the numerical integration of the RGEs to eqs.(3.4, 3.5), a task
that we perform carefully in the subsection 3.2.

The above equations (3.4, 3.5) replace the one-loop LL expressions (1.4, 1.6) used in the
standard Natural-SUSY treatment. If one considers the initial values of the soft parameters and

4This definition of the fine-tuning is reasonable and can be rigorously justified using Bayesian methods, see ref. [17]
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µ as the independent parameters that define the MSSM, then one can easily extract the associated
fine-tuning by applying eq.(3.3) to (3.2), and replacing m2

Hu
by the expression (3.4).

From eqs.(3.2, 3.4, 3.5)) it is easy to derive the ∆−parameters (3.3) for any MSSM scenario. A
common practice is to consider the (HE) soft terms and the µ−term as the independent parameters,
say

Θα =
{

µ,M3,M2,M1,At ,m2
Hu
,m2

Hd
,m2

U3
,m2

Q3
, · · ·
}
, (3.6)

which is equivalent to the so-called “Unconstrained MSSM".Then one easily computes ∆Θα

∆Θα
=

Θα

m2
h

∂m2
h

∂Θα

=−2
Θα

m2
h

∂m2
Hu

∂Θα

. (3.7)

E.g. ∆M3 is given by

∆M3 =−2
M3

m2
h

(
2cM2

3
M3 + cAt M3At + cM3M2M2 + · · ·

)
. (3.8)

The identification ∂m2
h

∂Θα
' −2

∂m2
Hu

∂Θα
in eq.(3.7) comes from eq.(3.2) and thus is valid for all the

parameters except µ , for which we simply have

∆µ =
µ

m2
h

∂m2
h

∂ µ
=−4c2

µ

µ2

m2
h
=−4

(
µ(LE)

m2
h

)2

. (3.9)

Note that for any other theoretical scenario, the ∆s associated with the genuine initial parame-
ters, say θi, can be written in terms of ∆Θα

using the chain rule

∆θi ≡
∂ lnm2

h
∂ lnθi

= ∑
α

∆Θα

∂ lnΘα

∂ lnθi
=

θi

m2
h
∑
α

∂m2
h

∂Θα

∂Θα

∂θi
. (3.10)

3.2 The fit to the low-energy quantities

Fits of the kind of eq.(3.4) can be found in the literature, see e.g.[18]. However, though useful,
they should be refined in several ways in order to perform a precise fine-tuning analysis. The most
important improvement is a careful treatment of the various threshold scales. In particular, the
initial MSSM parameters (i.e. the soft terms and the µ−parameter) are defined at a high-energy
(HE) scale, which is usually identified as MX , i.e. the scale at which the gauge couplings unify.
Although this is a reasonable assumption, it is convenient to consider the HE scale as an unknown;
e.g. in gauge-mediated scenarios it can be in principle any scale. The low-energy (LE) scale at
which one sets the SUSY threshold and the supersymmetric spectrum is computed, is also model-
dependent. Because of this, we have divided the RG-running into two segments, [MEW, MLE] and
[MLE, MHE]. Besides this refinement, we have integrated the RG-equations at two-loop order, using
SARAH 4.1.0 [19].

The results of the fits for all the LE quantities for tanβ = 10 and MHE = MX are given in ref.
[3]. The value quoted for each c−coefficient has been evaluated at MLE = 1 TeV. The dependence
of the c−coefficients on MLE is logarithmic and can be well approximated by

ci(MLE)' ci(1 TeV)+bi ln
MLE

1 TeV
. (3.11)
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The value of the bi coefficients is also given in ref. [3]. Certainly, the value of MLE ∼ mt̃ is itself
a (complicated) function of the initial soft parameters. Nevertheless, it is typically dominated by
the (RG) gluino contribution, MLE ∼ mt̃ ∼

√
3|M3| for MHE = MX . This represents an additional

dependence of m2
Hu

on M3, which should be taken into account when computing ∆M3 . Actually,
this effect diminishes the fine-tuning associated to M3 (which is among the most important ones)
because the impact of an increase of M3 in the value of m2

Hu
becomes (slightly) compensated by the

increase of the LE scale and the consequent decrease of the cM2
3

coefficient in eq.(3.4). We have
incorporated this fact in the computations of the fine-tuning.

4. The naturalness bounds

Let us explore further the size and structure of the fine-tuning, and the corresponding bounds
on the initial parameters, in the unconstrained MSSM, i.e. taking as initial parameters the HE
values of the soft terms and the µ-term: Θα =

{
µ,M3,M2,M1,At ,m2

Hu
,m2

Hd
,m2

U3
,m2

Q3
, · · ·
}

. For
any of those parameters we demand

|∆Θα
| <∼ ∆

max , (4.1)

where ∆Θα
are given by eq.(3.7). Now, for the parameters that appear just once in eqs.(3.4, 3.5) the

corresponding naturalness bound (4.1) is trivial and has the form of an upper limit on the parameter
size. For dimensional reasons this is exactly the case for dimension-two parameters in mass units,
e.g. for the squared stop masses∣∣∣∆m2

Q3

∣∣∣= ∣∣∣∣∣−2
m2

Q3

m2
h

cm2
Q3

∣∣∣∣∣ <∼ ∆
max −→ m2

Q3
<∼ 1.36 ∆

max m2
h (4.2)

where we have plugged cmQ3
= −0.367, which correspond to MHE = MX and MLE = 1 TeV ( see

Tables in ref. [3]). For ∆max = 100, we get mQ3
<∼ 1.46 TeV, mU3

<∼ 1.64 TeV, substantially higher
than the usual quoted bounds [2]. This is mainly due to the refined RG analysis and the use of the
radiatively upgraded expression eq.(3.2), rather than eq.(3.1), to evaluate the fine-tuning.

On the other hand, for dimension-one parameters (except µ) the naturalness bounds (4.1)
appear mixed. In particular, this is the case for the bounds associated to M3,M2,At . A detailed
analysis is presented in ref. [3], where |M3| <∼ 660 GeV, |M2| <∼ 1630 GeV, |At | <∼ 2430 GeV is
obtained for ∆max = 100. We also comment there the differences and improvements respect to the
results previously obtained by Feng [2].

The next step is to incorporate the other fine-tunings left aside (to get mexp
h ' 125 GeV and to

get large tanβ ) and translate those bounds into limits on the physical supersymmetric spectrum5.
We summarize bellow the most important characteristics of a Natural-SUSY scenario, as obtained
in [3]:

• Concerning the electroweak fine-tuning of the unconstrained MSSM (i.e. the one required to
get the correct electroweak scale), the most robust result is by far that Higgsinos should be
rather light, certainly below 700 GeV for ∆ < 100. This result is enormously stable against
changes in the HE scale since the µ−parameter runs very little from HE to LE.

5Unfortunately, there is no a one-to-one correspondence between the physical masses and the soft-parameters and
µ−term at high-energy. The only approximate exception are the gaugino and Higgsino masses.
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• The most stringent naturalness upper bound, from the phenomenological point of view, is the
one on the gluino mass. If MHE 'MX one gets Mg̃

<∼ 1.5 TeV for ∆max = 100.

• Light stop masses are not really a generic requirement of Natural SUSY. Actually, stops could
be well beyond the LHC limits without driving the electroweak fine-tuning of the MSSM
beyond 1%. Even more, in some scenarios, like universal scalar masses with MHE = MX ,
stops above 1.5 TeV are consistent with a quite mild fine-tuning of ∼ 10%.

Notice that for specific scenarios of SUSY breaking, the initial parameters might be particular
theoretical parameters that define the scenario and hence determine the soft terms. This dependence
has to be taken into account in the evaluation of the fine-tuning. We illustrate this issue in the next
section.

5. An example: fine-tuning analysis in Gauge-mediated SUSY breaking

Models with gauge-mediated supersymmetry breaking (GMSB) have become one of the most
popular supersymmetric scenarios [20]. In these models SUSY is broken in a hidden sector and
transmitted at loop-level to the visible sector via heavy chiral supermultiplets (messengers) that are
charged under the standard gauge interactions.

If the messengers form complete SU(5) representations, then gauge unification is preserved.
Hence, a usual choice is that the messenger sector consists of N5 copies of fundamental represen-
tations, 5+ 5̄. They couple to the superfield X which breaks SUSY in the hidden sector, thanks
to a non-vanishing VEV of its auxiliary component, 〈FX〉 6= 0. A second scale in the problem is
provided by Mmess, the masses of the fermionic components of the messengers after the breaking.

Gauginos and sfermions get masses at one-loop and two-loop respectively, namely:

Mi =
αi

4π
ΛN5 + ...., (5.1)

m2
f̃k
= 2Λ

2N5

3

∑
i=1

Ci

(
αi

4π

)2
+ ...., (5.2)

where Λ ∝ FX/Mmess (the proportionality constant depends on the coupling between X and the
messenger), Ci are the corresponding Casimir coefficients (see, e.g., [20]) and the dots stand for
terms suppressed in the Λ�Mmess limit.

The above expressions are to be understood at the high scale, MHE, where the effects of SUSY
breaking are transmitted to the observable sector, which coincides with the messenger mass, MHE =

Mmess. Altogether the minimal GMSB scenario has only 4 independent parameters {Λ,MHE,µ,B},
being highly predictive and a well-motivated MSSM model. Notice that, unlike the constrained
MSSM, the soft masses are different for particles with different quantum numbers, although they
are independent of the family. This partial universality is enough to avoid dangerous FCNC effects,
which an important success of GMSB.

Using the procedure detailed in previous sections, we can now compute the fine-tuning in Λ,µ

and MHE for a given value of tanβ (that selects a particular value of B). The relevant fine-tunings
are ∆Λ,∆MHE , given that ∆Λ ∼ ∆µ , as one can easily check. The results are shown in Fig. 1, where
we have taken N5 = 1 and fixed tanβ = 10. Notice that Λ values in the 1000 - 3000 TeV range are

8
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required in order to have an acceptable value for mH . These is due to the fact that for At ∼ 0 large
mH corrections imply large stop masses, and hence large Λ values. This implies, as it is already
known, an unacceptable fine-tuning for the minimal implementation of GMSB.
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Figure 1: In the left side we show the contour lines of constant ∆Λ (magenta) and mH , evaluated using
FeynHiggs [21] and SusyHD [22] (light and dark blue, respectively). The grey area is unphysical since it
corresponds to negative squared masses for the scalar messengers. In the right side, ∆MHE is instead shown.

6. Conclusions

In this work, we have addressed the supersymmetric fine-tuning in a systematic way, including
the discussion of the measure of the fine-tuning, the mixing of the fine-tuning conditions, the
method to extract fine-tuning bounds on the initial parameters and the low energy supersymmetric
spectrum, as well as the role played by extra potential fine-tunings. Using the tables in [3], we have
shown how evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical
model defined at any high-energy (HE) scale. Finally, we have analyzed in detail the complete
fine-tuning bounds for the unconstrained MSSM, defined at any HE scale, including the impact
that the experimental Higgs mass imposes on the soft terms. As a particular case, we have also
evaluated the fine-tuning in the minimal Gauge Mediation Supersymmetry Model.
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