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The gradient flow provides a new class of renormalized observables which can be measured with
high precision in lattice simulations. In principle this allows for many interesting applications
to renormalization and improvement problems. In practice, however, such applications are made
difficult by the rather large cutoff effects found in many gradient flow observables. At lowest or-
der of perturbation theory we here study the leading cutoff effects in a finite volume gradient flow
coupling with SF and SF-open boundary conditions. We confirm that O(a2) Symanzik improve-
ment is achieved at tree-level, provided the action, observable and the flow are O(a2) improved.
O(a2) effects from the time boundaries are found to be absent at this order, both with SF and
SF-open boundary conditions. For the calculation we have used a convenient representation of
the free gauge field propagator at finite flow times which follows from a recently proposed set-up
by Lüscher and renders lattice perturbation theory more practical at finite flow time and with SF,
open, SF-open or open-SF boundary conditions.
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1. Introduction

Following the seminal work by Lüscher [1] the Yang-Mills gradient flow has become a useful
tool in lattice gauge theories. A whole new class of gauge invariant observables with simple renor-
malization properties [2] has become available. Moreover, high statistical precision can be achieved
due to the smoothing properties of the gradient flow. In principle this offers new approaches for dif-
ficult non-perturbative renormalization problems and to non-perturbative Symanzik improvement
for lattice actions and fields [3]. In practice, however, a major drawback has been the observation
of rather large a2-effects in many gradient flow observables, cf. [4]. This motivated the applica-
tion of the Symanzik programme to O(a2) in [5] which revealed that complete O(a2) improvement
requires four ingredients:

1. O(a2) improvement of the lattice gauge action;

2. an a2- modification of the initial condition for the gradient flow equation at flow time t = 0;

3. classical O(a2) improvement of the flow equation and

4. of the observable under study.

For the last two ingredients Symanzik O(a2) improvement can easily be implemented non-pertur-
batively [5]. Regarding the first two items on this list, we here use the tree-level O(a2) improved
Lüscher-Weisz (LW) action and the initial condition then requires no modification to this order. We
here test this expectation using the finite volume coupling with SF and open-SF boundary condi-
tions at x0 = 0,T as a test case. Such boundary conditions are particularly convenient for QCD,
as they allow for simulations in the chiral limit and for gauge invariant correlation functions with
external fermion lines. In particular, running gradient flow couplings with SF boundary condi-
tions [6] can thus be studied directly in massless QCD. Following [7] we focus on the magnetic
energy density and for SF boundary conditions our calculation confirms results obtained there. Re-
garding the lattice action near the time boundaries at x0 = 0,T , we use a different set-up which has
been proposed by Lüscher in [8]. As a result a convenient representation of the free gauge field
propagator is obtained, and changing from SF to open boundary conditions or a mixture of these
(SF-open or open-SF) becomes rather trivial.

2. The gradient flow in the continuum and on the lattice

In the continuum, the Yang-Mills gradient flow equation

∂Bµ(t,x)
∂ t

= DνGνµ(t,x), Bµ(t,x)|t=0 = Aµ(x), (2.1)

defines a mapping from the fundamental gauge field, Aµ(x), to another gauge field Bµ(x, t), param-
eterized by the flow time parameter t ≥ 0. Here the covariant derivative Dµ = ∂µ + [Bµ , ·] of the
field strength tensor,

Gµν(t,x) = ∂µBν(t,x)−∂νBµ(t,x)+ [Bµ(t,x),Bν(t,x)] , (2.2)
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arises as the gradient of the Yang-Mills action, so that the B-field is driven towards the smooth
classical minimum of the Yang-Mills action. A most remarkable property of the gradient flow is
the fact that gauge invariant composite fields at finite flow time, such as the colour magnetic energy
density1,

Emag(t,x) =−
1
2

3

∑
k,l=1

tr{Gkl(t,x)Gkl(t,x)}=
1
4

3

∑
k,l=1

Ga
kl(t,x)G

a
kl(t,x) , (2.3)

are renormalized, i.e. their expectation values are finite once the standard renormalizations of the
action parameters (gauge coupling and fermion masses) have been carried out [2]. The gradient
flow equation is a non-linear equation in the B-field, however, in perturbation theory to leading
order it simply becomes the heat equation. In 4-momentum space, the B- and A-fields are then
related by

B̃µ(t, p) = Hµν(t, p,α)Ãµ(p) , (2.4)

where
H(t, p,α) = exp(−tK(p,α)), Kµν(p,α) = p2

δµν +(α−1)pµ pν , (2.5)

denotes the free heat kernel, K is the Yang-Mills action kernel and α > 0 is a parameter to dampen
the gauge modes during the flow-time evolution. In infinite space-time volume the gauge field
propagator at finite flow times s, t takes the form,

〈Ba
µ(s,x)B

b
ν(t,y)〉= δ

ab
∫ d4 p

(2π)4 eip(x−y)D̄µν(p;s, t;α,λ )+O(g2
0) , (2.6)

where we have passed to the usual perturbative field normalization by rescaling B→ g0B. Using a
matrix notation with matrix transpose HT for the Lorentz indices µ,ν = 0, . . . ,3, we have

D̄(p;s, t;α,λ ) = H(s, p,α)D(p,λ )H(t,−p,α)T , D(p,λ ) = K−1(p,λ ), (2.7)

with gauge parameter λ . For fixed 4-momentum this propagator is thus obtained by exponentiating
and inverting 4×4 matrices.

We now pass to a finite space-time volume with spatial volume L3 and time extent T . As-
suming L-periodic boundary conditions in the spatial directions but not in Euclidean time, the
expectation value of the magnetic energy density is given in terms of the gauge field propagator in
a time-momentum representation by

〈Emag(t,x)〉=
N2−1

2L3 ∑
p

3

∑
k,l=1

(
p2

δkl− pk pl
)

D̄kl(x0,y0,p;s, t;α,λ )|y0=x0;s=t . (2.8)

To completely define the propagator for spatial indices we impose either SF boundary conditions,

Ak(x)|x0=0 = 0 = Ak(x)|x0=T , k = 1,2,3, (2.9)

or SF-open boundary conditions,

Ak(x)|x0=0 = 0 = ∂0Ak(x)|x0=T , k = 1,2,3, (2.10)

and analogously for the B-field at positive flow times.
1We define e.g. Bµ = Ba

µ T a with anti-hermitian generators T a of SU(N) normalized to tr(T aT b) =− 1
2 δ ab. Colour

indices take values a = 1, . . . ,N2−1, and a summation convention is assumed.
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3. Boundary conditions from an orbifold reflection

Given a function ϕ(x0) on a circle of circumference 2T one may obtain boundary conditions
at x0 = 0,T by introducing a reflection

R : ϕ(x0)→ ϕ(−x0), (3.1)

about x0 = 0. Since R squares to the identity one may define a corresponding parity and decompose
any such function into even and odd parts,

ϕ(x0) = ϕ+(x0)+ϕ−(x0), (Rϕ±)(x0) =±ϕ±(x0). (3.2)

It is then easy to see that ϕ−(0) = 0 = ϕ ′+(0), i.e. one obtains Dirichlet and Neumann conditions
at x0 = 0 for the odd and even parts of ϕ , respectively. Moreover, 2T -periodicity implies the same
boundary conditions at x0 = T . Choosing 2T -antiperiodic boundary conditions interchanges the
Neumann and Dirichlet conditions at x0 = T .

The advantage of inducing boundary condition by such an orbifold reflection lies in the rem-
nants of translation invariance of the initial 2T -(anti)periodic set-up. In fact, in momentum space,

ϕ(x0) =
1

2T ∑
p0

eip0x0 ϕ̃(p0) =
1

2T ∑
p0

cos(p0x0)ϕ̃(p0)︸ ︷︷ ︸
ϕ+(x0)

+
1

2T ∑
p0

isin(p0x0)ϕ̃(p0)︸ ︷︷ ︸
ϕ−(x0)

, (3.3)

the projection onto even and odd components produces the functions cos(p0x0) and sin(p0x0),
respectively, while leaving ϕ̃(p0) unchanged. Boundary conditions at x0 = T depend on the set of
momenta being summed over, and the only difference on the lattice is the finiteness of the sum, and
the definition of Neumann conditions by a lattice derivative.

Applying this reflection principle to the spatial Lorentz components of the gauge field, ϕ(x0)=

B̃k(t,x0,p) for k = 1,2,3, one obtains the propagator in time-momentum representation as a sum
over p0,

D̄kl(x0,y0,p;s, t;α,λ ) =
1
T ∑

p0

sin(p0x0)sin(p0y0)D̄kl(p;s, t;α,λ ), (3.4)

with the symbol in 4-momentum space as given in eq. (2.7). Here the sum is over momenta p0

which are allowed by 2T -periodicity except for p0 = 0 [8],

p0 = n0π/T, n0 =±1,±2, . . . (3.5)

or by 2T -antiperiodicity,

p0 = (n0 +
1
2)π/T, n0 = 0,±1,±2, . . . (3.6)

Moreover, taking into account that sin(p0x0)sin(p0y0) is an even function of p0 one obtains twice
the sum over non-negative values of n0. The Euclidean time-components can be treated similarly
but are not given here, as these are not required for our observable.
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4. Lattice specific expressions

We refer the reader to ref. [5] for the gradient flow on the lattice and its Symanzik improve-
ment. Here we are only interested in the perturbative expansion to lowest order, where the lattice
result takes the same form as in eq. (2.8), except that the sums over p and p0 have (L/a)3 and T/a
terms, respectively, due to the restriction of the momenta to the Brillouin zone, −π/a≤ pµ < π/a,
for µ = 0,1,2,3. Furthermore the Yang-Mills kernels K(p,α) and K(p,λ ) for the flow and the
action, respectively, have to be replaced by their lattice counterparts [5]. In particular, we need the
kernel for the Wilson action,

KW
µν(p,λ ) = p̂2

δµν +(λ −1)p̂µ p̂ν , (4.1)

with the usual lattice momenta p̂µ = (2/a)sin(apµ/2). Slightly more complicated are the kernels
for the Lüscher-Weisz action,

KLW
µν (p,λ ) = p̂2

δµν +(λ −1)p̂µ p̂ν +
a2

12

[
(p̂4 + p̂2 p̂2

µ)δµν − p̂µ p̂ν(p̂2
µ + p̂2

ν)
]
, (4.2)

and for the Zeuthen flow, which is obtained from the LW-kernel through,

KZ
µν(p,α) =

(
1− a2

12 p̂2
µ

)
KLW

µν (p,0)+α p̂µ p̂ν . (4.3)

Finally the lattice observables are obtained using lattice derivatives and thus lattice momenta.
Considering the magnetic energy density, made dimenensionless by a factor t2, as function of
c =
√

8t/L, for x0 = T/2, T = L and the lattice resolution a/L, we define

t2〈Emag(t,x)〉|c=√8t/L;T=L;x0=L/2 = g2
0

ˆN
(

c,
a
L

)
+O(g4

0) , (4.4)

and obtain (with N = 3 colours),

ˆN
(

c,
a
L

)
=

c4

8 ∑
p

sin2
(

p0L
2

) 3

∑
k,l=1

K3d
kl (p)D̄kl(p) , (4.5)

where K3d
kl (p) coincides with the reduction to 3 dimensions of the lattice variants of the kernel

Kµν(p,0) (2.5), as given in [5]. For instance, the plaquette observable corresponds to

K3d, pl
kl (p) = p̂2

δkl− p̂k p̂l , (4.6)

and the kernel for an O(a2) improved observable is then obtained as a linear combination with the
clover definition [5],

K3d, imp
kl (p) =

4
3

K3d, pl
kl (p)− 1

3
K3d, cl

kl (p) . (4.7)

The numerical evaluation was done with a C++ program and the Armadillo-library in ref. [11]
for numerical matrix exponentiations and inversions. We have produced data for the c-values
0.3,0.4,0.5 and lattice resolutions L/a = 8,10, . . . ,32. As we are interested in improvement we
look at the difference of to the expected continuum limit (which was also computed numerically).
Rescaling this difference by (L/a)2 and setting c = 0.3 we observe, in Fig. 1, that indeed only the
combination of Zeuthen flow, LW-action and improved observable leads to the absence of O(a2)

4
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effects. Results with SF-open boundary conditions and these parameters look indistinguishable by
eye and are thus not shown. Finally, looking at the O(a2) improved setup, we plot the data for SF
boundary conditions and 3 c-values in Fig. 2. The relevant resolution for cutoff effects should be
a/
√

8t = a/(cL) [7], so that one expects a reduction of cutoff effects as c is increased. On the other
hand, for our choice of x0 = T/2 and T = L we expect cutoff effects from the time boundaries to be
no longer exponentially suppressed once c approaches 0.5. However, we observe that there are, to
this order of perturbation theory, no visible boundary effects2 at O(a2) or O(a3). This observation
also applies to SF-open boundary conditions. Again, we only show the SF results in Fig. 2, as the
corresponding plot for SF-open boundary conditions looks almost identical. While this is expected
for c = 0.3 it remains the case up to c = 0.5 and despite the fact that the continuum limits do show
a dependence on the boundary conditions: the discrepancy between SF and SF-open continuum
results for c = 0.3 is at the 1 per cent level, increasing to about 10 per cent at c = 0.5.

Figure 1: The figure shows O(a2) cutoff effects with SF boundary conditions at c = 0.3. The labels are
ordered in such a way they indicate action, flow, and observable. O(a2) improvement is seen only with LW
action, Zeuthen flow and improved observable. We then "unimprove" one by one to distinguish the cutoff
effects origination from the Wilson action, Wilson flow and plaquette/clover observables, respectively.

5. Conclusion

We confirm expectations based on the O(a2) improved framework of ref. [5] and previous
results in [7]. We have derived a convenient representation of the gauge field propagator using the
set-up proposed in [8], which allows us to apply an orbifold reflection principle. We anticipate that
the gauge propagator representation will be very useful in future perturbative computations which
might be needed to complement a non-diagrammatic numerical approach [12, 13].
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Figure 2: O(a2) improved data for c = 0.3,0.4,0.5 and with SF boundary conditions, cf. text.
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