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1. Introduction

In our textbooks on quantun field theory [1], we learn that the consistent form of gauge
anomaly of the Weyl fermions is obtained from the axial U(1) anomaly in 6-dimensions via 5-
dimensional parity anomaly:

Tr[F3] = dTr
[

A(dA)2 +
3
2

A3dA+
3
5

A5
]
, (1.1)

δvTr
[

A(dA)2 +
3
2

A3dA+
3
5

A5
]
= d

{
vaTr

[
T ad(AdA+

1
2

A3)

]}
. (1.2)

Here we have used the differential form for the gauge field A = Aµdxµ , and F = dA+A2 with
the external derivative d, and gauge transformation function v = vaT a with the generators T a of
SU(N) gauge group. This is the so-called Stora-Zumino chain of the anomaly descent equations
[2, 3, 4], and the obtained consistent gauge anomaly is known to be the unique solution to the
Wess-Zumino condition [5]. The 5-th and 6-th dimensions in Refs.[6, 7] are introduced to describe
a 2-parameter family of continuous interpolation from trivial gauge field to the reference gauge
field and the gauge transformations. However, it is not clear whether these extra-dimensions have
physical importance beyond a mathematical tool to derive the consistent anomaly.

In this work [8], we try to give more physical meaning of the extra-dimensions in a formulation
of Weyl fermions. Namely, we consider the 5-th and 6-th directions as real coordinates, and put
a massive Dirac fermion in 6-dimensional Euclidean space-time. Since this starting point is a
massive and vector-like fermion system, we expect that a naive lattice discretization by the Wilson
fermion is sufficient to non-perturbatively regularize it.

A Weyl fermion appears as a low-energy state localized on a 4-dimensional junction in the
6-dimensions. This situation is realized by putting a part of the 6-dimensional bulk space in a
“topological” phase. More concretely, we introduce two kinds of domain-wall masses, perpen-
dicular to each other, which give a gap to the 6-dimensional fermion in the bulk, but produces a
gapless mode at the junction of the domain-walls. We may consider this set-up as a “doubly gapped
topological insulator” which has a gapless mode at “the edge of the edges”.

We find that the Stora-Zumino anomaly chain is naturally embedded in our 6-dimensional
Dirac fermion determinant. The total determinant can be decomposed into 6-dimensional bulk, and
5, and 4-dimensional edge localized mode’s contributions. The complex phase of the 6-dimensional
bulk modes in the topological phase is nothing but the axial U(1) anomaly. Since this U(1) anomaly
is a total divergence, its parity violation appear as a 5-dimensional surface contribution, which is
compensated by the parity anomaly appearing in the phase of the 5-dimensional modes. The gauge
transformation of the parity anomaly of the 5-dimensional modes is again a total divergence and its
4-dimensional surface contribution is then canceled by the gauge anomaly of the Weyl fermion at
the 4-dimensional domain-wall junction.

Since the axial U(1) symmetry is a global symmetry, its anomaly causes no theoretical prob-
lem in constructing a gauge theory in 6-dimensions. It is, however, an obstruction to give a 4-
dimensional local effective theory, since it contains the information of whole 6-dimensional gauge
configuration even in the low-energy limit. If we are forced to consider such a theory as one in the
4-dimensional effective theory, it is no longer a local field theory. The anomaly-free sets of fermion
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flavors are the special exceptions where we can have a local 4-dimensional effective action. For
the anomaly free fermion contents, the gauge and parity anomalies are canceled among flavors and
never flow into the 6-dimensional bulk.

The two domain-walls must carry different quantum numbers. If they were constructed by the
same operator, for example, the ordinary mass term in 6-dimensions, the resultant 4-dimensional
mode would be not chiral but vector-like fermion having both of left- and right-handed modes.
Therefore, it is a non-trivial issue how to choose the two domain-wall operators. We find several
combinations of the two domain-walls producing the Weyl mode at the junction, and in fact, what
we chose for the presentation at the conference turned out to be not appropriate for having non-local
cancellation of the physical 4-dimensional phase of the determinant1. Here, we take another option:
a combination of a simple mass term and an axial vector in 6-th direction to give the domain-wall
profile.

Since the axial vector operator is invariant under the axial U(1) rotation, our second domain-
wall: a kink structure of the axial vector operator, has nothing to do with the Stora-Zumino anomaly
ladder. It is, however, not invariant under another anomalous symmetry: it flips the sign under
reflection of 5-th coordinate. Since this symmetry is identical to the one yielding the parity anomaly
in 5-dimensions, we call it P′ symmetry (which is different from ordinary parity P symmetry in 6-
dimension). To consider physical importance of P′ symmetry, let us consider a single fundamental
Dirac fermion in SU(2) gauge theory. This fermion is known to have no axial U(1) anomaly, which
results in no perturbative gauge anomaly in 4-dimensions. However, this fermion can still have
non-trivial zero-modes related to the mod-two index theorem reflecting the non-trivial homotopy
group π5(SU(2)) = Z2. Now let us “assume” that this mod-two index is precisely counted by P′

transformation. Then our second domain-wall should mediate its effects from the 5-dimensional
bulk to the 5- and 4-dimensional edges, which may be regarded as the origin of global anomaly [9].
In fact, we find a ladder of mod-two type indices:

π5(SU(2)) = Z2 → π4(SU(2)) = Z2 → complex phase of 4-d Weyl fermion. (1.3)

Thus, our model contains an interesting possibility of the global anomaly as the consequence of the
mod-two instantons in the 6-dimensions.

This work is strongly motivated by the recent work by Grabowska and Kaplan [10], who pro-
posed to construct the chiral gauge theory using the Yang-Mills gradient flow in the 5-th direction
of their domain-wall fermion formulation, to maintain the exact 4-dimensional gauge invariance.
We find that their idea can be easily extended to our 6-th dimension and we use the gradient flow
to define the 4-dimensional path integration of the chiral gauge theory. In fact, taking the first
domain-wall mass to infinity, our model converges to their 5-dimensional model. In this sense,
our 6-dimensional proposal may be an extension of their work to incorporate the global anomaly.
However, we need a further investigation to confirm this possibility since the use of the Yang-Mills
gradient flow makes the role of global anomalies obscure: it seems not to allow non-trivial mod-two
index in 6-dimensional bulk.

The rest of this article is organized as follows. In Sec. 2, we define our model and show how a
Weyl fermion appears at the domain-wall junction. Then in Sec. 3 we show that the Stora-Zumino

1We thank D. B. Kaplan for pointing out this problem.
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anomaly chain is naturally embedded in our 6-dimensional Dirac fermion determinant. In Sec.4 we
discuss how the global anomalies appear in our model. The anomaly free condition in our model
can be reduced to the cancellation of the complex phase in the 6-dimensional bulk, which comes
from the global anomalous symmetries of the 6-dimensional Dirac fermions (Sec. 5). Finally we
propose a lattice regularization in Sec. 6 and give a summary and discussion in Sec. 7.

2. Our 6-dimensional model

In this work, we consider a 6-dimensional Euclidean space-time whose boundary condition
for both of the fermions and bosons is periodic in every direction. Since we are interested in
the 4-dimensional gauge theory, we simply take the 5-th and 6-th components of the gauge fields
to be zero, i.e. A5(x) = A6(x) = 0. For the other components, we require Aµ(µ = 1,2,3,4) to
be symmetric under x5 → −x5 and x6 → −x6 (later we give more concrete form of x5- and x6-
dependences of Aµ by the Yang-Mills gradient flow).

Our 6-dimensional determinant of a Dirac fermion with the Pauli-Villars field is defined by

exp(−W2DW)≡ det
(

D6D +Mε(x6)+ iµε(x5)γ6γ7

D6D +M+ iµγ6γ7

)
, (2.1)

where D6D denotes the 6-dimensional Dirac operator with a gauge group SU(Nc), ε(x) = x/|x|
denotes the sign function, and γi are the 8× 8 gamma matrices, with which the chiral operator
is defined as γ7 = i∏6

i=1 γi. Note that the two domain-walls parametrized by M (we call the M
domain-wall) and µ (µ domain-wall) intersect with each other at x5 = x6 = 0, where a Weyl fermion
appears. Since the fermion fields satisfy periodic boundary conditions, there also exist anti-domain-
walls in the determinant. Although the anti-domain-walls do not appear in the expressions, we
always assume that they are there, and will explicitly write them whenever it is necessary.

M denotes the conventional Dirac fermion mass, whose domain-wall structure is known to
produce massless fermions on it. As we will see below, this mass term is sensitive to the axial U(1)
transformation and is the origin of the perturbative gauge anomaly, which appears at the junction
of the two domain-walls.

The µ term or the axial vector in the 6-th direction

iµψ̄γ6γ7ψ, (2.2)

on the other hand, is insensitive to the axial U(1) rotation but flips its sign under a “parity” trans-
formation P′ or the reflection with respect to the x5 axis:

P′ψ(x) = iγ5R5ψ(x), ψ̄(x)P′ = iR5ψ̄(x)γ5, (2.3)

where Ri denotes the reflection of the i-th coordinate: Ri f (xi) = f (−xi). Note that this parity is
different from the conventional parity:

Pψ(x) = γ1 ∏
i ̸=1

Riψ(x), ψ̄(x)P = ∏
i̸=1

Riψ̄(x)γ1, (2.4)

where we take i = 1 to be the temporal direction. The main difference is that P
′2 = −1 while

P2 = 1.
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The P′ symmetry has an anomaly [11, 12, 13]. Since {D6D,P′} = 0, every eigenvalue iλ of
D6D has its pair −iλ , except for the zero modes. Therefore, under P′, the massless fermion action
is manifestly invariant, while the zero-mode’s contribution to the fermion measure Jacobian is not,
since P′ flips its sign,

Dψ̄0P′DP′ψ0 =−Dψ̄0Dψ0. (2.5)

Note that those from non-zero modes always cancel with their partners. Therefore, the P′ transfor-
mation counts the number of zero-modes I. Here we would like to stress that I can be different
from the conventional topological charge, or the axial U(1) index P . An example is the SU(2)
theory where the U(1)A anomaly is exactly zero. Nevertheless, there exists the so-called mod-two
index related to the homotopy group π5(SU(2)) = Z2. This homotopy group happens to be iso-
morphic to π4(SU(2)) = Z2, which describes the global anomaly [9]. It is then natural to “assume”
that the number of instantons are given by I = P +I , where P controls the perturbative gauge
anomaly, while I is the origin of global anomalies.

As we have set A5(x) = A6(x) = 0, we have D6D = D4D+γ5∂5+γ6∂6. Then we can easily find
a solution of the Dirac equation

(D6D +Mε(x6)+ iµε(x5)γ6γ7)ψ(x) = 0, (2.6)

localized at the domain-wall junction x5 = x6 = 0 as

ψ(x) = e−M|x6|e−µ|x5|ϕ(x̄), (2.7)

D4Dϕ(x̄) = 0, (2.8)

γ6ϕ(x̄) = ϕ(x̄), (2.9)

iγ5γ6γ7ϕ(x̄) = ϕ(x̄), (2.10)

where x̄ = (x1,x2,x3,x4) and we have assumed M > 0 and µ > 0. Note that the latter two conditions
Eqs.(2.9) and (2.10) on ϕ(x̄) require the field to have a positive chirality (the opposite chirality can
be realized by flipping the sign of M and µ). Namely, we have a single Weyl fermion localized at
the domain-wall junction.

As a final remark of this section, we point out that the choice of the second domain-wall
operator is not unique2. Here we have chosen the axial vector but other operators could reproduce
the Weyl fermion mode at the junction as well. As mentioned in the introduction, some of them fail
to reproduce the physical complex phase of the 4-dimensional effective theory. We need further
investigation how to choose the appropriate combinations of the two domain-walls.

3. Stora-Zumino anomaly ladder

Now let us look into the structure of the anomaly ladder. This can be performed by decompos-
ing the total Dirac fermion determinant into 6-, 5- and 4-dimensional mode’s contributions. Details
are shown in our paper [8].

2A proposal of using the pseudoscalar operator for the second domain-wall was given by Neuberger in Ref. [14].
We also discuss other possibilities in our paper [8].
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Let us begin with a simpler set-up taking µ = 0:

det
(

D6D +Mε(x6)

D6D +M

)
. (3.1)

We may regard this fermion determinant as a model for the 6-dimensional topological insulator,
whose boundary is set at x6 = 0 plane. This determinant is real and therefore, its complex phase
can be written as iπI. Now we insert determinants with an intermediate cut-off M2, to numerators
and denominators (thus canceling each other) and take the M ≫ M2 ≫ 0 limit:

det
(

D6D +Mε(x6)

D6D +M

)
= det

(
D6D +Mε(x6)+ iM2γ6γ7

D6D +M

)
×det

(
D6D +Mε(x6)

D6D +Mε(x6)+ iM2γ6γ7

)
. (3.2)

Here the first determinant corresponds to the 6-dimensional bulk contribution with an IR cut-off
M2 and the second one is the 5-dimensional edge mode’s contribution whose UV cut-off is given
by M2.

We find by the Fujikawa’s method, that the first determinant in Eq.(3.2) produces the axial
U(1)A anomaly:

Imlndet
(

D6D +Mε(x6)+ iM2γ6γ7

D6D +M

)
= π

∫
d6x

1− ε(x6)

2
1

6(4π)3 εµ1···µ6 tr[Fµ1µ2Fµ3µ4Fµ5µ6 ]

= πP6D
x6<0 +πCS, (3.3)

where P6D
x6<0 counts the bulk instanton number in the region x6 < 0, and CS is the Chern-Simons

term on the M domain-wall,

CS ≡ −
∫

x6=0
d5x

2
3(4π)3 εµ1···µ5 tr

[
1
2

Aµ1Fµ2µ3Fµ4µ5 −
i
2

Aµ1Aµ2Aµ3Fµ4µ5 −
1
5

Aµ1Aµ2Aµ3Aµ4Aµ5

]
.

(3.4)

In the second determinant of Eq.(3.2), only the boundary localized mode satisfying γ6ψ = ψ
and (γ6∂6+Mε(x6))ψ = 0, at the M domain-wall can contribute. Rearranging the gamma-matrices,
one obtains

lim
M→∞

det
(

D6D +Mε(x6)

D6D +Mε(x6)+ iM2γ6γ7

)
= det

(
D̄5D

D̄5D +M2

)
, (3.5)

where the determinant in the RHS is taken in the reduced space of 4×4 gamma matrices γ̄i, and the
corresponding Dirac operator is given by D̄5D = ∑5

i=1 γ̄ ′i ∇i|x6=0, where γ̄ ′i = iγ̄5γ̄i.
It is known that the complex phase of the 5-dimensional massless Dirac fermion determinant

in Eq. (3.5) is given by the so-called η-invariant [15, 16, 17], we have obtained a mathematical
formula

I= P6D
x6<0 +CS− η5D

2
, (3.6)

known as the Atiyah-Patodi-Singer index theorem [18, 19, 20].
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Now let us take µ finite, and take the limit M ≫ µ ≫ 0:

det
(

D6D +Mε(x6)+ iµε(x5)γ6γ7

D6D +M+ iµγ6γ7

)
= det

(
D6D +Mε(x6)+ iµγ6γ7

D6D +M+ iµγ6γ7

)
×det

(
D6D +Mε(x6)+ iµε(x5)γ6γ7

D6D +Mε(x6)+ iµγ6γ7

)
. (3.7)

The first determinant in Eq.(3.7) gives the same contribution as the one in Eq. (3.2), i.e. they yield
the same contribution π(P6D

x6<0 +CS) to the phase of the determinant. This is consistent with the
axial U(1)A insensitivity of the µ domain-wall.

The second determinant in Eq.(3.7) in the M → ∞ limit, becomes

det
(

D̄5D +µε(x5)

D̄5D +µ

)
, (3.8)

which corresponds to the standard 5-dimensional domain-wall fermion determinant [10].
As shown in [10], or in our paper taking the anti-domain-wall effects more explicitly, the

complex phase −iπη5D/2 (let us keep this notation given in the µ = 0 case) of the determinant
Eq. (3.8) can be decomposed as

− 1
2

η5D = −CS(x5<0)−I 5D
M≫µ −

1
2

η4D +
ϕ anom

π
, (3.9)

where we have another CS term restricted to the x5 < 0 region [21]:

−πCS(x5<0) ≡ π
∫

x6=0
d5x

4
3(4π)3

1− ε(x5)ε(L5 − x5)

2
εµ1···µ5 tr

[
1
2

Aµ1Fµ2µ3Fµ4µ5

− i
2

Aµ1Aµ2Aµ3Fµ4µ5 −
1
5

Aµ1Aµ2Aµ3Aµ4Aµ5

]
, (3.10)

and I 5D
M≫µ counts the number of exotic instantons in 5-dimension. As 4-dimensional contributions

from the Weyl fermion, we have a gauge invariant part denoted by η4D, and the anomalous part
ϕ anom whose gauge symmetry breaking exactly cancels that in CS(x5<0).

More explicitly, we obtain in the µ = ∞ limit,

lim
µ→∞

det
(

D̄5D +µε(x5)

D̄5D +µ

)
= exp

(
−iπCS(x5<0)− iπI 5D

M≫µ

)
× lim

µ2→∞
det

D

D +µ2
, (3.11)

where D is

D = P5
−D̄4DP5

++P5
+∂̄ 4DP5

−, (3.12)

with D̄4D =∑4
i=1 γ̄ ′i ∇i|x6=x5=0 and P5

± = (1± γ̄5)/2. As will be shown later, we define the bulk gauge
fields from the 4-dimensional gauge fields at the junction in such a way that the Dirac operator
∂̄ 4D = ∑4

i=1 γ̄ ′i ∇i|x6=0,x5=L5 becomes that for a (almost) free fermion, so that the negative chirality
mode at x5 = L5 is decoupled from the theory.

What we have obtained is the anomaly ladder

ϕ total/π = P6D
x6<0 +CS− η5D

2
,

1
2

η5D = CS(x5<0)+I 5D
M≫µ +

1
2

η4D − ϕ anom

π
, (3.13)
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where P6D
x6<0 denotes the 6-dimensional U(1)A anomaly, CS and CS(x5<0) represent the 5-dimensional

parity anomaly, and ϕ anom is the source of the consistent gauge anomaly. This result is consistent
with the anomaly descent equations found by Stora [2] and Zumino [3, 4], including the overall
constant determined by Alvarez-Gaumé and Ginsparg [6] and Sumitani [7].

4. Global anomaly ladder?

In order to trace the anomaly inflow via the µ domain-wall, let us take the limit µ ≫M ≫ 0. As
will be shown below, the µ term is insensitive to the U(1)A rotation and there is no anomaly inflow
related to the axial U(1)A anomaly, and therefore, the conventional perturbative gauge anomaly.
A natural question is then to ask if there is any other anomaly flowing into the µ domain-wall or
not. The answer is yes. As pointed out in Sec. 2, we know an example of the exotic instantons
and in SU(2) gauge theory, which are insensitive to the U(1)A rotation. We assume here that these
exotic instantons can be precisely detected by the P′ anomaly. Then, we should have a non-trivial
anomaly inflow through the µ domain-wall because it is not invariant under P′ transformation.

Similarly to the previous section, our goal of this section is to decompose the complex phase
of the determinant into three parts:

Imlndet
(

D6D +Mε(x6)+ iµε(x5)γ6γ7

D6D +M+ iµγ6γ7

)
= ϕ total = ϕ 6D +ϕ 5D +ϕ 4D, (4.1)

in the limit of µ ≫ M ≫ 0.
First, let us decompose the determinant as

det
(

D6D +Mε(x6)+ iµε(x5)γ6γ7

D6D +M+ iµγ6γ7

)
= det

(
D6D + iµε(x5)γ6γ7 +M

D6D + iµγ6γ7 +M

)
×det

(
D6D + iµε(x5)γ6γ7 +Mε(x6)

D6D + iµε(x5)γ6γ7 +M

)
, (4.2)

where the first part corresponds to the 6-dimensional bulk contribution and the second is the one
from 5- and 4-dimensional boundary.

Note again that unlike the M domain-wall, the first determinant of Eq. (4.2) does not produce
the axial U(1) anomaly. Due to the explicit violation of the SO(6) Lorentz symmetry by the axial
vector background, the phase ϕ 6D of the second determinant can be expanded in an SO(5) invariant
series of 1/µ , except for the non-perturbative zero mode’s contribution πI 6D

x5<0, which is located
in the region x5 < 0. More explicitly, we obtain by one-loop computation

ϕ 6D = πI 6D
x5<0 +µϕ (1)+O(1/µ), (4.3)

where, the leading order contribution has a form of the Chern-Simons term

ϕ (1) = c0π
∫

d6x
4

3(4π)3
1− ε(x5)

2
ε i1···i5 tr

[
1
2

Ai1Fi2i3Fi4i5 −
i
2

Ai1Ai2Ai3Fi4i5 −
1
5

Ai1Ai2Ai3Ai4Ai5

]
,

(4.4)

where c0 is a constant. Since ϕ (1) cancels among the anomaly free fermion contents, the only
non-trivial phase is given by πI 6D

x5<0 when the perturbative gauge anomaly is absent.

7
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The second determinant of Eq. (4.2) in the µ → ∞ limit converges to3

det
(
P+(D̂5D +M)−1(D̂5D +Mε(x6))P++P−

)
×det

(
P+(D̂5D −M)−1(D̂5D −Mε(x6))P++P−

)
, (4.5)

where D̂5D = (∑4
i=1 γ̄i∇i + γ̄5∂6)|x5=0, and P± ≡ (1± γ̄5)/2 are Hermitian projection operators. Un-

like the case in the previous section, what we obtain here on the µ domain-wall is not a single
Dirac fermion but two (4-component) Dirac fermions having Pauli-Villars masses ±M with op-
posite signs, that are constrained to have the positive eigenvalue of the gamma matrix γ̄5. This
expression is almost real, except for the domain-wall x6 = 0, since the complex phase comes from
the non-commutativity of D̂5D and Mε(x6), which is proportional to δ (x6). We can thus express
the phases of the 5- and 4-dimensional contributions as

ϕ 5D = πI 5D
x6<0, (4.6)

ϕ 4D = −π
2

η4D, (4.7)

assuming that the M ≫ µ ≫ 0 and µ ≫ M ≫ 0 limits commute to obtain the same gauge invariant
part of ϕ 4D as in the previous section. It is natural to assume that I 5D

x6<0 gives the mod-two instanton
found by Witten [9] which describes the global gauge anomaly.

Note in Eq. (4.5), only the Weyl fermion with positive M appears in the low-energy limit, while
the other leaves a non-local phase, which cannot be described by any local action. We consider the
latter non-local phase as the contribution of the Chern-Simons, which automatically cancels the
perturbative gauge anomalies.

To summarize this section, we have confirmed the anomaly inflow via µ domain-wall,

ϕ total = πI 6D
x5<0 +πI 5D

x6<0 −
π
2

η4D +µϕ (1)+O(1/µ), (4.8)

where the mod-two type indices I 6D
x5<0 and I 5D

x6<0 are balanced in a non-trivial way with the 4-
dimensional phase η4D (even when the perturbative gauge anomaly and ϕ (1) are absent).

5. Anomaly free condition

In the previous two sections, we have traced two different anomaly inflows taking M ≫ µ ≫ 0
and µ ≫ M ≫ 0 limits. At finite M and µ , the situation can be more complicated but the non-trivial
cancellation of anomalies among different dimensions should be maintained to keep the gauge
invariance of the total theory. In the end, a single Weyl fermion always appears at the junction of
the two domain-walls.

When a small gauge transformation is performed at the 4-dimensional junction, the gauge
current flows through the M domain-wall, but never flows into the µ domain-wall, since there is
no CS term which can absorb the gauge non-invariance. Instead, a large gauge transformation can
create exotic instantons on the µ domain-wall and flip the sign of the partition function. Thus, we
confirm that the perturbative anomaly inflow, which naturally exhibits the Stora-Zumino anomaly

3As D̂5D and P+ do not commute with Mε(x6), we make the order of the matrix operations explicit.
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descent equations, is mediated by the M domain-wall, while the inflow of the global anomaly goes
through the µ domain-wall (see Fig. 1).

Now the perturbative and global gauge anomalies are viewed as these missing gauge current
inflows into the 5- and 6-dimensional bulk. If these currents happen to cancel among different
flavors (of the 6-dimensional Dirac fermion), the heavy bulk mode fermions can be decoupled
from the low-energy theory, leaving the 4-dimensional effective theory of Weyl fermions. Thus,
the anomaly free condition is to require the cancellation of the U(1)A anomaly and the P′ anomaly
in 6-dimensional Dirac fermions. This condition is equivalent to the cancellation of the phase of
the bulk fermion determinant mod 2π× integer, which agrees with the recent discussion by Witten
[23]. Note that the 4-dimensional edge modes at the domain-wall junction are still allowed to have
their own complex phase.

The cancellation of the U(1)A anomaly is guaranteed if

∑
L

trT a
L {T b

L ,T
c

L }−∑
R

trT a
R {T b

R ,T
c

R}= 0, (5.1)

where TL/R denote the gauge group generators in L/R representation of the corresponding left/right
handed fermions. This condition assures the cancellation of the U(1)A anomaly, as well as the CS
term on the M domain-wall, so that the gauge current never flows out of the 4-dimensional junction.

The cancellation of the global anomalies is more non-trivial, as discussed in [22, 23]. The
global anomaly should be absent not only on a simple manifold like S4 or S5 but also on any
compact manifold. Our set-up on the 6-dimensional torus having domain-wall junctions of 4-
dimensional torus, is already such a non-trivial example.

Here we take the most conservative condition:

number fermions in the fundamental representation = even, (5.2)

after the irreducible decomposition. Since the phase from the the exotic index I is always multi-
plied by 2π× integer, the global anomaly effect is absent in the 5- and 6-dimensional bulkmodes.
Note that the standard model of particle physics satisfies the above condition if we identify e/6 as
a unit charge of the hyper-charge.

6. Lattice regularization

Since our 6-dimensional formulation is based on a massive Dirac fermion, it is natural to
assume that we can non-perturbatively regularize it on a lattice using the Wilson Dirac operator.

First let us put our lattice in a 6-dimensional finite box. In particular, we take the 5-th and 6-th
coordinates in the ranges −L5 < x5 ≤ L5 and −L6 < x6 ≤ L6 and assume the periodic boundary
condition of the Dirac fields in every direction. Because of the boundary condition, we need (at
least) one M anti-domain-wall at x6 = L6(=−L6) and one µ anti-domain-wall at x5 = L5(=−L5).
Then we have 4 domain-wall junctions. Two Weyl fermion modes with positive chirality appear
at (x5,x6) = (0,0) and (0,L6), while those with negative chirality are localized at (x5,x6) = (L5,0)
and (L5,L6).

Among these 4 junctions, only the one at (x5,x6) = (0,0) is needed to formulate the Weyl
fermion in 4-dimensions. Therefore, the other massless fermions at other three junctions have to

9
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Figure 1: The anomaly inflows through the two domain-walls. The M domain-wall at x6 = 0 mediates
the perturbative anomaly inflow (red arrows), which exhibits the Stora-Zumino descent equations. The µ
domain-wall at x5 = 0 mediates the inflow of the global anomaly (blue).

be decoupled from the total theory. To achieve this, we follow the idea in [10] using the Yang-Mills
gradient flow in the fifth and sixth directions. The gradient flow exponentially weaken the gauge
fields with the flow time so that the Weyl fermions at x5 = L5 and x6 = L6 are decoupled from the
gauge fields4. As flowed fields transform in the same way as the original fields under the gauge
transformation, we can maintain the 4-dimensional gauge invariance of the total theory.

More concretely, we pick up a set of link variables {Uµ(x̄)}(µ = 1, · · ·4) on the 4-dimensional
junction at (x5,x6) = (0,0). Then we solve the lattice version of the Yang-Mills gradient flow
equation,

∂
∂ t

U t
µ(x̄) =−

{
∂x,µSG(U t)

}
U t

µ(x̄), (6.1)

using U0
µ(x̄) = Uµ(x̄) as the initial condition, where ∂x,µSG(U t) denotes the Lie derivative of the

gauge action SG(U t) with respect to U t
µ(x̄), to define

Uµ(x̄,x5,x6) =U |x5|+|x6|
µ (x̄). (6.2)

Here we always set U5 = U6 =unity. Note that the resulting link variables Uµ(x̄,x5,x6) are sym-
metric under x5 →−x5 and x6 →−x6.

4Recently it was proved that this is true except for those coming from the non-trivial topologies. See Refs.[24, 25,
26]
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Finally we “define” the 4-dimensional path integral of anomaly free theory with Weyl fermions.
Together with the gauge part of the action SG({Uµ(x̄)}), we define∫

DUµ(x̄)e−SG({Uµ (x̄)})∏
i

exp
[
−W i

lat({Uµ(x̄)})
]
, (6.3)

where

exp
[
−W i

lat({Uµ(x̄)})
]
=

det

(
D6DRi

W +Miε(x6 −a/2)ε(L6 − x6 −a/2)+ iµiε(x5 −a/2)ε(L5 − x5 −a/2)γ6γ7

D6DRi
W +Mi + iµiγ6γ7

)
,

(6.4)

where D6DRi
W denotes the Wilson Dirac operator in the Ri representation of the gauge group, and Mi

and µi are chosen to be positive/negative for positive/negative chiral modes. Note that the Wilson
term has to have an opposite sign to Mi and µi. These mass parameters are to be of the order of
the lattice cut-off 1/a. However, to avoid contamination from the doubler modes, Mi and µi should
satisfy some upper bounds. We always assume that the set of fermion flavors satisfy the anomaly
free conditions Eqs. (5.1) and (5.2). Our set-up is presented in Fig. 2.

7. Summary and discussion

We have proposed a regularization of the chiral gauge theories in 4-dimensions, using massive
6-dimensional Dirac fermions. Using the two different kinds of domain-walls, we have succeeded
in localizing a single Weyl fermion at the junction of the domain-walls. One domain-wall is made
giving a kink mass in the 6-th direction to the fermions, while another domain-wall is made by
giving a kink structure in the 5-th direction to a background operator which is insensitive to the
U(1)A rotation. Our set-up can be viewed as a “doubly” gapped topological insulator, whose 4-
dimensional edge modes become massless.

The domain-wall of the conventional mass term mediates the perturbative anomaly inflow and
naturally exhibits the chain of the 6-dimensional U(1)A, 5-dimensional parity, and 4-dimensional
gauge anomalies, known as the descent equations found by Stora [2] and Zumino [3, 4]. On another
domain-wall, the fermions are forced to form (almost) a real representation and only mediates the
mod-two type anomaly, which we have assumed to be the source of the global anomalies.

The anomaly free condition of the target 4-dimensional gauge theory is translated to the can-
cellation of the axial U(1) and P′ anomalies for a set of 6-dimensional Dirac fermions. This con-
dition removes the total complex phase from the bulk part of the fermion determinant, while the
4-dimensional edge modes can have their own phase. Using the Yang-Mills gradient flow in the
5-th and 6-th directions, we can control the remnant of the gauge non-invariance due to the finite
cut-offs, and decouple the Weyl fermions at the junctions of anti-domain-walls. As our formulation
is nothing but a massive vector-like theory, we expect that a non-perturbative regularization on a
lattice is possible, using standard Wilson Dirac fermions.

There are still a lot of open issues to be investigated. There is an arbitrariness in the choice
of the µ domain-wall operator, to realize a single Weyl fermion at the domain-wall junction. It is
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Figure 2: Schematic view of our 6-dimensional finite lattice. The ± symbols show the Weyl modes with
positive and negative chiralities, localized at each of the four domain-wall junctions. The case with M > 0
and µ > 0 is shown. Our target Weyl fermion with positive chirality is localized at the origin, while other
three Weyl fermions are decoupled from the gauge fields by the gradient flow.

also unclear if the µ domain-wall and associated P′ anomaly necessarily and sufficiently classify
the global anomalies.

It is an interesting question if our formulation can be extended to a model with physical extra
dimensions also in the gauge sector. Such a direction may be linked to studies of higher dimensional
beyond the standard models. Our formulation suggests that there is a possibility of doubly gapped
topological insulators in four-dimensions, having a conducting mode on two-dimensional edges,
which may be realized in condensed matter systems. Finally, it would be great if we can incorporate
the Higgs field to our 6-dimensional lattice and give a non-perturbative definition of the standard
model, which is also an interesting subject for further study.

We thank S. Aoki, D. Grabowska, K. Hashimoto, D. B. Kaplan, Y. Kikukawa, H. Suzuki, and
S. Yamaguchi for useful discussions. This work is supported in part by the Grand-in-Aid of the
Japanese Ministry of Education Nos. 25800147, 26247043 (H.F.), No. 26400248(T.O.), and No.
15J01081 (R.Y.).
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