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1. Introduction

The preponderance of matter over antimatter in the observable Universe can be explained by

baryogenesis, a requirement for which is the breaking of the CP symmetry. While CP-violation

(CPV) is present in the Standard Model, its magnitude appears to be too small to account for

the size of the matter/antimatter asymmetry, suggesting new, Beyond the Standard Model (BSM)

physics awaits discovery. Direct CPV in K-meson decays is highly suppressed in the Standard

Model and therefore offers a particularly sensitive probe for BSM sources of CPV.

Direct CPV in kaon decays was discovered in the late 1990s with the following result:

Re(ε ′/ε)≈ 1

6

(

1−
∣

∣

∣

∣

η00

η±

∣

∣

∣

∣

2
)

= 16.6(2.3)×10−4 ,

where ε ′ and ε are the measures of direct and indirect CPV, respectively, and ηi j = A(KL →
πiπ j)/A(KS → πiπ j). However, until recently there has not been a reliable Standard Model pre-

diction for this quantity that can be compared to experiment because the process receives large

corrections from low-energy QCD interactions that are not amenable to perturbative calculations.

The RBC & UKQCD collaborations recently published [1] the first direct calculation of ε ′,
obtained using lattice QCD via the isospin-definite amplitudes AI = K → (ππ)I , where I refers to

the isospin quantum number of the final ππ state. These amplitudes are computed on the lattice as

AI = F
GF√

2
V ∗

usVud [zi(µ)+ τyi(µ)]Zi j(µ)〈(ππ)I|Q j(µ)|K〉 , (1.1)

where F is the Lellouch-Lüscher factor [2] that represents the finite-volume correction to the de-

cay amplitude, z and y are c-number Wilson coefficients, τ =−V ∗
tsVtd/VudV ∗

us, Vi j are CKM matrix

elements, and Qi are a set of dimension-six four-quark operators. Zi j is the renormalization matrix

relating the bare lattice operators to MS operators normalized at the scale µ , thereby matching the

scheme used in the calculation of the Wilson coefficients. These are computed without resorting

to the use of perturbative QCD at the hadronic scale by using an intermediate ‘regularization-

invariant momentum scheme’ with symmetric kinematics (RI-SMOM) [3, 4] with which we can

non-perturbatively run to a high energy scale where we can legitimately match to MS using con-

tinuum perturbation theory.

The result is as follows:

Re

(

ε ′

ε

)

= Re

{

iωei(δ2−δ0)

√
2ε

[

ImA2

ReA2

− ImA0

ReA0

]

}

= 1.38(5.15)(4.59)×10−4 ,

where the errors are statistical and systematic, respectively. Here δI are the s-wave ππ-scattering

phase shifts and ω = ReA2/ReA0. Our result has roughly 3× the experimental error and agrees

with experiment to 2.1σ . However there is a hint of a tension that has provoked much interest both

within and outside the lattice community, providing strong motivation for continued study.

These proceedings summarize the collaboration’s effort to reduce the both the statistical and

systematic errors on our result, with the goal of a 2× reduction in the total error.

2. Statistical error reduction

The 30% statistical error relative to the experimental result is dominated by that on Im(A0), de-

spite measuring upon 216 independent configurations. (We use the experimental values for Re(A0)
and Re(A2) as these are dominated by current-current operators that are not expected to receive

large BSM contributions.) The reason for this is two-fold: first, the I = 0 two-pion state has vac-

uum quantum numbers and therefore receives substantial contributions from gauge field noise; and
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Resource Million BG/Q equiv core-hours Independent cfgs.

USQCD (BNL 512 BG/Q nodes) 50 220

RBRC/BNL (BNL 512 BG/Q nodes) 17 50

UKQCD (DiRAC 512 BG/Q nodes) 17 50

NCSA (Blue Waters) 108 380

KEK (KEKSC 512 BG/Q nodes) 74 296

Total 266 996

Table 1: A breakdown of the various resources we intend to utilize. Note that we require 4 molec-

ular dynamics time units per independent configuration.

second, the dominant contributions, those of the QCD penguin operators Q4 and Q6, cancel at the

50% level, enhancing the relative error on their sum.

The statistical error can be reduced by the target factor of two simply by increasing the number

of measurements by a factor of four. This also grants the opportunity to correct an error [5] in

the random number generator seeding used in the generation of the ensemble used in the earlier

calculation. While the effects of this error numerically appear to be negligible they do damage our

ability to claim an ab initio calculation.

Unfortunately the use of G-parity spatial boundary conditions to obtain an energy conserving

decay necessitates the generation of additional gauge configurations. In order to circumvent the

serial nature of ensemble generation we have started a number of independent streams. In Table 1

we list the resources currently employed and the number of independent configurations we aim

to obtain. To date we have generated over 250 new, independent configurations and are therefore

making steady progress towards our target.

We hope to perform the majority of our measurements using early access time on the NERSC

Cori II (Intel Knight’s Landing) machine. Preparation for this and the ensemble generation on the

Blue Waters (Cray XE6) machine has involved substantial work porting our high-performance Blue

Gene/Q (BG/Q) code based on the BFM library [6] to the more general Grid [7] framework. This

work has been accompanied by significant optimization of our measurement code.

In addition to the above, we are performing an investigation into the use of the ‘exact one-flavor

algorithm’ [8] (EOFA), a gauge-field evolution technique that allows the calculation of the fermion

determinant for a single quark flavor. The standard approach is to take the square-root of the

determinant of two quark flavors, which can be computed much more easily due to the hermiticity

and positive definiteness of the two-flavor operator. G-parity boundary conditions require this root

to be computed for the light quark determinant, resulting in a significant increase in computational

expense over conventional simulations. Preliminary results [9] suggest that EOFA will give rise to

a considerable increase in the rate of generating gauge configurations.

3. Systematic error reduction

The systematic error is dominated by perturbative truncation errors in the Wilson coefficients

and in the matching factors that connect our RI-SMOM scheme non-perturbative renormalization

(NPR) factors to MS. The reason is that the matching scale at which we apply perturbation theory

is limited by the lattice cutoff, and in our calculation the coarse lattice spacing forces us to choose a

low matching scale of 1.53 GeV. This limit can be circumvented using the ‘step-scaling’ technique

whereby the NPR factors are run between successively finer lattices up to an arbitrarily large energy

scale at which perturbation theory can be applied reliably.

In these proceedings we present a preliminary analysis in which step scaling is applied between

our original 323×64 Möbius domain wall fermion ensemble with the Iwasaki+DSDR gauge action

at β = 1.75 (a−1 = 1.378(7) GeV) and a 243 ×64 Shamir domain wall fermion ensemble with the

Iwasaki gauge action at β = 2.13 (a−1 = 1.785(5) GeV). We refer to these as the 32ID and 24I
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Figure 1: Four-quark operator momentum configuration for the RI-SMOM operators.

ensembles, respectively. On the 24I ensemble we use a renormalization scale of µ = 2.29 GeV,

and on the 32ID we lower the renormalization scale from the former 1.53 GeV to 1.33 GeV in

order to reduce our susceptibility to discretization errors. The step-scaled renormalization matrix

is computed as follows:

Z(2.29 GeV,step-scaled) =
Z(2.29 GeV,24I)

Z(1.33 GeV,24I)
Z(1.33 GeV,32ID) . (3.1)

Note that we do not take the continuum limit of the Z-factors on either lattice as the resulting error

is expected to be small in comparison to our other errors.

The perturbative matching formulae between the RI-SMOM and MS schemes are thus far only

available to one-loop, hence we might expect the errors to scale naïvely with α2
s : Between the low

and high scales above α2
s = 0.1546 → 0.0774, suggesting a possible factor of 2 improvement in

the truncation systematic using this procedure.

3.1 Summary of RI-SMOM procedure

Seven independent four-quark operators Q′
i, where i∈ 1,2,3,5,6,7,8 (the indices indicate their

relation to the conventional 10-operator basis), enter the calculation of the low-energy K → ππ

amplitudes at leading order in the weak effective theory, which mix at next-to-leading order in

QCD. We must therefore compute the 7× 7 NPR matrix relating the bare lattice operators to the

chosen RI scheme, defined via

Q′RI
i (µ) = Zlat→RI

i j Q
′,lat
j (µ) . (3.2)

This matrix is computed by imposing the following set of renormalization conditions:

Z−2
q P

ab
j 〈EabQ′RI

i (2q)〉amp. = (tree level value) ji (3.3)

where Zq is the field strength renormalization, 〈.〉amp denotes the expectation value of the amputated

operator and Eab is an operator creating four quarks with momenta as shown in Figure 1. These

momenta obey the symmetric momentum condition, q2 ≡ p2
1 = p2

2 = (p1 − p2)
2 = µ2, where pi

are the quark momenta indicated in the figure. P j are a set of 7 projection operator acting on

the external state E, which, alongside the renormalization condition on the field renormalization,

define the scheme.

In order to estimate the perturbative truncation systematic we utilize two schemes labelled

SMOM(/q,/q) and SMOM(γµ ,γµ), where the first term in parentheses relates to the form of the

projection operator applied to the four-quark operator, and the second term to that applied in the

determination of Zq (cf. [10]).

3.1.1 Inclusion of G1

While Q′
i form a complete set of operators that contribute to the on-shell decay amplitude,

there are three additional gauge-invariant dimension-6 operators, G1, G2 and G3, that mix with Q′
i

under renormalization and that, by the equations of motion (EOM), either vanish or can be written

as linear combinations of Q′
i in the on-shell limit. The most important of these is G1,

3
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G1 =− 4

g2
s̄γµ(1− γ5)(DνGνµ)d , (3.4)

which mixes at 1-loop in QCD. While this mixing is expected to be small, we can eliminate a

potential source of systematic error by including it in our operator basis as an eighth operator. We

therefore define the renormalized operators

Q′RI
i = Zlat→RI

i j Q′ lat
j + clat→RI

i Glat
1 , and GRI

1 = dlat→RI
i Q′ lat

i +Zlat→RI
G1

Glat
1 . (3.5)

Below we summarize a procedure by which G1 can be included in our calculation without a signifi-

cant expenditure of computational resources. A more detailed discussion can be found in Ref. [11].

For an on-shell matrix element, the continuum EOM implies that for the bare operators,

G1 = Q′
2 +

7

3
Q′

3 −
1

3
Q′

5 +Q′
6 , (3.6)

which gives rise to the following condition on the Green’s functions of renormalized operators,

〈 f |GRI
1 (µ)|i〉= si(µ)〈 f |Q′RI

i (µ)|i〉 . (3.7)

Corrections to si arise due to the renormalization of the bare operators, but enter only at two-loops;

for sufficiently large scales µ , the values of si can therefore be reliably obtained directly from

Eq. 3.6: s2 = 1, s3 = 7/3, s5 =−1/3 and s6 = 1 with the remainder zero. We can then insert these

relations into Eq. 3.5 and obtain a direct relation between the bare lattice matrix elements:

〈 f |Glat
1 |i〉= k j(µ ,a)〈 f |Q′ lat

j |i〉 where k j(µ ,a) =
siZ

lat→RI
i j (µ ,a)−dlat→RI

j (µ ,a)

Zlat→RI
G1

(µ ,a)− skclat→RI
k (µ ,a)

.

(3.8)
We can therefore write 〈 f |Q′RI

i (µ ,a)|i〉= Rlat→RI
i j (µ ,a)〈 f |Q′ lat

i |i〉 (3.9)

where
Rlat→RI

i j (µ ,a)≡ Zlat→RI
i j (µ ,a)+ clat→RI

i (µ ,a)k j(µ ,a) . (3.10)

In others words the inclusion of G1 in our calculation requires only the evaluation of the renor-

malization coefficients ci and the quantity k j in our RI schemes without ever having to compute

on-shell K → ππ amplitudes of the G1 operator (a far more daunting task).

The evaluation of the renormalization coefficients requires a suitable definition of G1 on the

lattice. Here our use of the continuum EOM to relate G1 to Q′
i offers the advantage that we are free

to choose a convenient discretization; had we used the lattice EOM we would be forced to use a

specific and inconvenient form that is far more difficult to evaluate. We choose the following form,

Glat
1 =

1

2
s̄xγµ(1− γ5)

[

Ux,µLx,µ +Lx−µ̂,µU(x− µ̂,µ)
]

TA
dx (3.11)

where Lx,µ is the standard, µ-oriented staple and [.]TA indicates the traceless, antihermitian form

of the contents. It remains to define a suitable external state, projector and compute the tree-level

value per Eq. 3.3, the details of which can be found in Ref. [11]. Specifically, we use a four-quark

external state
Es = sα

a (−p1)d̄
β
b (p2) f γ

c (−p1) f̄ δ
d (p2) (3.12)

where f is a fictitious quark with flavor different from u,d and s such that it does not contract

directly with the G1 two-quark operator and instead enters only via disconnected diagrams. We

choose two forms for the projector,

P/q,G1
= δabδcd [(/q)γ

5]βα(/q)δγ and Pγµ ,G1
= δabδcd [(γ

µ)γ5]βα(γµ)δγ (3.13)

which correspond to the the SMOM(/q,/q) and SMOM(γµ ,γµ) schemes, respectively. These are

slight modifications of those defined in Ref. [10] in that we have inserted γ5 in order to project

out the parity-odd component. While both parity components will have the same renormalization

4
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1.32 GeV 24I 1.33 GeV 32ID 1.53 GeV 32ID 2.29 GeV 24I 2.29 GeV 2.29 GeV

stepscaled, no G1 stepscaled inc. G1

(1,1) 0.06076(15) 0.063454(63) 0.05978(13) 0.036954(41) 0.03948(16) 0.03948(16)

(2,2) 0.203(19) 0.204(15) 0.300(68) 0.0795(70) 0.080(33) 0.092(35)

(2,3) 0.310(21) 0.317(16) 0.363(76) 0.1486(59) 0.153(36) 0.161(42)

(2,4) 0.0120(48) 0.0076(42) 0.030(22) 0.0033(23) 0.0083(89) 0.0086(93)

(2,5) 0.0120(42) 0.0005(31) 0.015(20) 0.0039(15) 0.0074(53) 0.0081(77)

(3,2) 0.283(22) 0.268(15) 0.264(87) 0.1547(42) 0.143(23) 0.174(26)

(3,3) 0.391(25) 0.414(17) 0.44(11) 0.2207(39) 0.238(25) 0.297(32)

(3,4) 0.0012(59) 0.0002(34) 0.019(27) 0.0077(13) 0.0057(59) 0.0017(66)

(3,5) 0.0128(62) 0.0264(43) 0.008(27) 0.0190(11) 0.0247(46) 0.0090(68)

(4,2) 0.118(70) 0.094(53) 0.24(25) 0.037(24) 0.07(10) 0.06(11)

(4,3) 0.113(76) 0.073(62) 0.26(30) 0.026(20) 0.08(11) 0.09(13)

(4,4) 0.006(20) 0.006(16) 0.076(88) 0.0318(80) 0.024(30) 0.023(31)

(4,5) 0.023(18) 0.019(12) 0.046(79) 0.0014(50) 0.033(19) 0.027(26)

(5,2) 0.239(28) 0.205(28) 0.19(17) 0.0957(84) 0.048(63) 0.033(74)

(5,3) 0.404(34) 0.347(37) 0.25(20) 0.1885(90) 0.101(77) 0.075(99)

(5,4) 0.0106(80) 0.0174(98) 0.039(62) 0.0028(26) 0.044(20) 0.031(23)

(5,5) 0.0810(100) 0.0740(93) 0.016(56) 0.0303(23) 0.012(15) 0.062(21)

(6,6) 0.00461(21) 0.005040(92) 0.006154(96) 0.001631(63) 0.00185(24) 0.00185(24)

(6,7) 0.002132(46) 0.003396(25) 0.002073(59) 0.001567(12) 0.002002(43) 0.002002(43)

(7,6) 0.02221(12) 0.024916(60) 0.024131(91) 0.018826(21) 0.02260(20) 0.02260(20)

(7,7) 0.127052(87) 0.133903(52) 0.12284(25) 0.080743(12) 0.08705(11) 0.08705(11)

Table 2: Preliminary values of Ξ obtained using the renormalization matrices obtained at various

scales on the 32ID and 24I lattices, as well as using the step-scaled matrices with and without G1.

coefficients, we have observed that the parity-odd component typically has smaller statistical errors.

Note that the power-divergent mixing of G1 with lower-dimension operators must also be removed

by defining a subtracted operator, as is discussed in Ref. [11].

In Ref. [11] results were obtained for Ri j in the SMOM(γµ ,γµ) scheme on the 24I ensemble

with µ = 2.29 GeV, where it was shown that, while statistically resolvable, the effects of the G1

operator indeed enter only at the percent-level at this scale.

3.2 Estimation of the renormalization systematic

We seek a scheme for estimating the size of the perturbative truncation errors on our result.

One possibility is to examine the difference between the results in the MS scheme obtained via our

two different intermediate schemes. Rather than involving the matrix elements themselves, which

are statistically noisy and vary significantly in size, it is convenient to instead study the differences

between the elements of the 7×7 lattice→ MS renormalization matrix

Rlat→MS via RI
i j (µ) = H

RI→MS, 1-loop
ik (µ)Rlat→RI

k j (µ) , (3.14)

where H is the perturbative matching matrix. The matrix Rlat→MS via RI is formally independent of

the intermediate RI scheme up to the perturbative truncation error. We define the matrix

Ξ ≡

∣

∣

∣

∣

∣

∣

I−
R

lat→MS via SMOM(/q,/q)

1-loop

R
lat→MS via SMOM(γµ ,γµ )
1-loop

∣

∣

∣

∣

∣

∣

, (3.15)

where |.| implies the absolute value of each element is taken. Under the reasonable assumption that

the missing NNLO and higher terms of the matching matrix for the two schemes are comparable

in size, we might expect the elements of Ξ to vary between zero and roughly twice the relative size

of the missing terms. We therefore choose to assign a percentage systematic error that is one half

of the largest observed element of Ξ at a scale µ .
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3.3 Results

In Table 2 we tabulate the non-zero elements of Ξ. Once again we observe that the effects of

including or discounting the G1 operator, while harder to statistically resolve after passing through

the step-scaling procedure, are at the percent scale.

As expected there is a general trend towards smaller values as we increase the scale. How-

ever the (3,3) elements are consistently larger than the others by a considerable amount, even at

high scales. This occurs because the 1-loop correction to the matching matrix in the SMOM(/q,/q)
scheme (Table XI of Ref. [10]) is almost twice as large as the next largest entry, and is O(25%) at

µ = 1.53 GeV. It is therefore natural that the NNLO and higher corrections will be correspondingly

larger. As this behavior is unique to the (3,3) element, and that Q′
3 does not contribute significantly

to our final result, we ignore this outlier and instead estimate the truncation systematic from the

next-largest difference. We therefore estimate a 15% error at the 1.53 GeV scale, consistent with

our previous result [1]. For the new, step-scaled renormalization factors at 2.29 GeV this drops to

8%, which is consistent with the expected α2
s dependence.

4. Conclusions and outlook

In order to improve on our first complete calculation of ε ′ in the Standard Model we are aiming

to reduce the statistical and systematic errors by a factor of two or more. To this end we are utilizing

significant computational resources to extend the number of measurements by the required factor

of four, which we expect will be achievable within the next year.

The dominant systematic errors arise from the 1-loop truncation of the perturbative calcula-

tions used to match our non-perturbative renormalization scheme to MS and to compute the Wilson

coefficients. Both can be reduced by increasing the renormalization scale using step-scaling. In

this document we presented preliminary results for the step-scaled renormalization factors obtained

with a high energy scale of 2.29 GeV, and we observe a factor of two reduction in our estimated

error. We have also discussed the inclusion of the G1 operator in this procedure and demonstrated

that its effects are small as expected. A similar reduction might be expected in the truncation

systematic for the Wilson coefficients, an analysis of which will be forthcoming.
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