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1. The LLR algorithm

Monte Carlo (MC) importance sampling simulations are one of the most powerful methods to
study non-perturbative phenomena in quantum field theory. Despite their success, there is a number
of known cases where they perform very poorly. For instance, in systems with a non-real action,
the path integral measure is not positive-definite; as a consequence, to reach a given accuracy in
a numerical computation using a direct implementation of importance sampling techniques, one
would need a simulation time that scales exponentially with the size of the system. Another well
known problem with exponential complexity is the computation of partition functions and free
energies [1]; in fact these quantities cannot be expressed as expectation values over a probability
measure and this leads to poor perfomances of MC importance sampling simulations.

An alternative method based on the density of states has been recently proposed [2, 3]. At
action value s, the density of states p(s) is defined via the functional integral

p(s) = [1DI8(s[6] ). (1)

where ¢ is some generic dynamical field variable, [ D¢ is the path integral over the field con-
figurations and S[@] the action of the Euclidean quantum field theory. From the density of states
it is possible to compute the partition function and expectation of observables via a simple one
dimensional integration. For instance, if O is a function of s,

_Ip (5)O(s)e Psds

(0) = Tp)e Fds (1.2)

(see [3] for the case of a generic observable).

The LLR algorithm is a numerical method to compute the density of states from first principles
that has proved to be very efficient in different models [3, 4, 5, 6] (see also the contributions [7, 8,
9, 10] to this conference). However, it relies on a simulation of the system in action intervals of
given amplitude &s. While in principle it is possible to simulate every system in a restricted action
interval, it can be technically very difficult or inefficient. Here, we propose a new version of the
LLR algorithm that is based on the global Hybrid Monte Carlo algorithm and avoids to constrain
the system inside action intervals.

2. Analytic support function

The key idea of our method is to replace the sharp-cut in action of the LLR algorithm with a
strongly localised analytic support function. The simplest possible choice is a Gaussian function.
Following the lines of the original LLR algorithm, we define a double bracket expectation value by

1 —aS _(s=59)?
WfSDasio =75 [ FS)p(S)eSe 5t ds. @)
where ,
¥ = / p(S)e*”Se_%dS. (2.2)
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and a is a parameter. Considering the simple observable (S —Sp), we have

(5—5)2

1 _
(S = S0))asno = / (S—So)p(S)e e 304 ds | 2.3)

We Fourier-transform the Gaussian function, obtaining

J(S— SO)P(S)e_“Sfdkeiksoe—ozkzds
fp(S)efaSfdkeiksoefdzkzds

((S—50))asp.0c = (2.4)

For small o, we can expand both numerator and denominator in powers of 62, which gives

2 % . —ap(So)

_ CL 5 0 4
((S—50))a,s0,0 = > T p(Soe +0(c"). (2.5)

If we impose that ((S — So))a.5,,0 = 0, we obtain

dlogp

((S—S0))aspc =0 = a= 7S

(2.6)

So

By virtue of the above equation, in the same spirit of the original LLR method, the problem of
computing the density of states is reduced to the problem of finding the coefficients a; such that
the double brackets expectation values in eq.(2.5) are zero. From the a;, an approximate density of

states that converges to the real one in the limit ¢ — 0 can be reconstructed imposing piece-wise
continuity of p. This yields

N-1
p(S)=po | [Te"? | e~V 2.7)
k=1
In order to compute the double brackets expectation values in eq.(2.5) we will need a Markov Chain
Monte Carlo (MCMC) that will sample the configurations with weight given by

(s-50)*

W(S[9],S0,0,a) < e e 202 = Ul9S0.0a (2.8)

A natural approach is to use a global Hybrid Monte Carlo.

3. The global Hybrid Monte Carlo

The first step for defining a global Hybrid Monte Carlo (HMC) sampler is a differentiable
potential function. In our case the function

(S —Sp)?

52 3.1)

Ul¢,So,0,a] =aS+

in eq.(2.8) can be used as the potential energy of the HMC sampler. The next step is to define the
canonical conjugate field p; and add to the Hamiltonian the kinetic term, which gives

Hlpi.0] = ¥, 257 +U[9. 0. 0.a (3.2)
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At this point we are able to define the force as the gradient of the Hamiltonian, i.e.

JH as 1
fe-gR-_ %8 <a+62(S—SO)> | (33)

This formula shows that the molecular dynamic force in our case is proportional to the one in the
standard HMC, with the proportionality factor being straightforward to compute.

The Hamiltonian evolution is given by the usual Hamilton equation and can be solved numeri-
cally by using any volume preserving integrator algorithm. At the end of the Hamiltonian evolution
the the configuration is accepted or rejected according to the usual Metropolis test, with acceptance
that can be tuned to an optimal value by changing the integration step.

Let us remark that due to the term é (S — Sp) the forces are very large during thermalisation,
while they become much smaller once the action of the system is close to the center of the Gaussian
So. To overcome the problem of large forces, during thermalisation we change the integration step
after every Metropolis test in order to keep the acceptance ratio close to 0.8.

We are now in a position to compute by MCMC sampling the double brackets expectation
values in eq.(2.5). However our final goal is to solve the stochastic equation

((S—S0))a,50,0 =AS(a) =0. (3.4

The stochastic nature of the latter is due to the fact that we cannot have an exact determination of
the function AS(a), which is known only through Monte Carlo estimates. The numerical solution of
stochastic equations can be found using the iterative Robbins-Monro procedure [11]. This begins
with a guessed value ag which is updated using the iteration

{(S—5%0))

Apy] = Qp — C——, (3.5
n

see [3] for more details. Once the a’s are computed the density of states is reconstructed using
eq.(1.1), with errorbars determined using bootstrap resampling.

4. Replica exchange method

In principle, the algorithm proposed in the previous section is ergodic: given enough time, the
algorithm will explore the entire phase space. On the other hand, the probability to visit states with
action very far from the peak of the Gaussian function will be very small and this may lead to a
slow dynamic of the Markov Chain. In order to overcome this problem, the method can be easily
combined with replica exchange steps (see e.g. [12] for a similar approach in the Wang-Landau
case). The idea is to simulate multiple intervals in parallel and periodically propose a swap of two
of them with probability given by

P,, = min(l,eU(a,So)—FU/ (a/,Sz))—U(a/ ,SI))-FU/ (a,SQ)) ’ (4 1)
where a, Sy, U refers to the first system and a/,Sz), U’ to the second one. The function U is defined
ineq.(3.1). In fig. (1) we report an example of SU(2) gauge theory simulated using this technique.
Swaps of replica are frequent, determining a faster evolution of the Markov Chain than in the case
of sampling over single intervals.
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Figure 1: In this figure we plot the MC histories of 16 replicas for a 163 x 3 lattice. Different symbols
correspond to different replicas and we connected the symbols of four selected replicas to guide the eyes.
The y-axis shows the peak of the Gaussians, while on the x-axis we report the MC time. It is clear that with

the chosen set of parameters the swap probability is fairly high.

5. Application to the energy momentum tensor in Yang-Mills field theory

The energy momentum tensor is a fundamental quantity in quantum field theory that provides
the set of conserved Noether currents originating from translational invariance. In Yang-Mills the-
ory it is possible to show that if the theory is regularised in such a way that translational symmetry
is preserved, the energy momentum tensor does not need renormalisation and is given by

1 1
Tuv = g7 {F“aFva - ZaquaBFaﬁ } . (5.1)

When using lattice regularisation, translational symmetry is explicitly broken and the energy mo-
mentum tensor needs to be renormalised [13]. The renormalised energy momentum tensor can be

written as the sum of three operators,

Tew =70 { T+ 2T + 2 (10— (1)) } (52)
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where the three operators are

T = (1— ) {F“Fa} (5.3)
1

78 _s 1 fpa pa pa pa

v = 8w {FiaFiaFasFas | - (5.5)

Using shifted boundary conditions [14] for the fields in the time direction
A(L07x) :A<O7X_LO€) ’ (56)

it is possible to write a set of Ward Identities [15] that fixes the renormalisation constants Z7, z;, zs.
Here we focus on the renormalisation constant Z7 which can be obtained from the formula

f(ﬁ,Lo,g—Cl]%L())—f(ﬁ,Lo,é—f—a]%Lo) 1
2a (THB)e

with f(B, Lo, &) the free energy of the system with shift &, coupling 8 and inverse temperature Ly.

Zr(B) = (5.7)

The free energy can be computed from the density of states:

log [dSe=PS)p (s
F(BoLo,&) = 08 ev P . (5.8)

In the left panel of fig. (2) we plot the density of states as a function of the action for two 123 x
3 lattices with shifts (%,0,0) and (3,0,0) respectively. We would like to remark that we can
appreciate the small difference between the two densities of states for a large range of orders of
magnitude. The right panel of fig. (2) is the probability density for the same lattices at B = 2.36869,
and again we are able to measure the small difference between the two distributions even when the
probability density is extremely suppressed with respect to the peak. With the same parameters we
computed the difference of free energy by changing the shift from (%, 0,0) to (%, 0,0), obtaining
percent precision on our value,

Af(B =2.36869) = 0.002319(21) . (5.9)

6. Conclusions

In this contribution we presented a new version of the LLR algorithm to compute the density
of states that is based on the Hybrid Monte Carlo algorithm. The main advantages of this new
formulation is that it is very general and can be used for every continuos model for which it is
possible to compute the gradient of the action. In addition, it avoids to constrain the system in
action intervals, which can be technically difficult to implement.

In principle, the extension of our method to theories with fermionic degrees of freedom is
straightforward. We are currently testing the algorithm for the computation of the energy momen-
tum tensor in SU(2) Yang-Mills theory and our preliminary results seem very encouraging.
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Figure 2: Left: density of states for vol = 123 x 3 and shifts & = (%,0,0) and £ = (%,0,0). Right: Proba-
bility density for $=2.36869, vol = 12% x 3 and shifts & = (3,0,0) and & = (3,0,0).
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