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There are plausibility arguments that QED in three dimamsioas a critical number of flavors
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nature of three-dimensional QED.
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1. Introduction

Parity-invariant QER with 2N; flavors of massless two-component fermions coupled to three-
dimensional non-compact Abelian gauge-fields has been studied in thagpasguantum field
theory which can be tuned to be conformal or to have a mass-gap byichahg The question
is the following — is there a critical number of flavors of two-component fermizids below
which massless QEDIn a finite box of lengthY generates other low-energy length scales which
are independent dfas? — «? One such low-energy length scale that is of interest is the bilinear
condensat& which, if non-zero, governs the following scaling of the low-lying eigenealyj of
the massless Dirac operator: L

Z
=573 (1.1)
wherez are universal numbers depending only on the symmetries of the Diractapenad can
be obtained from a random matrix model with the same symmetries (refer [1li¢br & model
corresponding to QES$). In this talk, based on our publications [2, 3], we primarily address the
existence of for smallN; (= 1,2,3,4) by asking ifA ~ ¢~(+P) with p= 2. We summarize the
status of the understanding of the critidgl before our studies in Figure 1 (see [2] and references
therein, for a complete literature survey). The analytical computations, each wiittowim limita-
tions, suggested that the critiddy lie between 0 and 4. The previous lattice studies suggested that
it could be 1 or 2.
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Figure 1. Few representative older calculations [4, 5, 6, 7, 8, 9] efd¢htical value ofN; below which
bilinear condensate exists. The lafge€omputation points to an infra-red fixed point. Various pdrative
calculations as well as approximate solutions to the gaptémuhave been carried out to investigate the
stability of the infra-red fixed point. These calculationggest the critical value might lie anywhere between
0 and 4. The previous non-perturbative lattice studies dDg&ggest this critical value might be 1 or 2.

2. Latticedetails

We regulated QEPRin a finite box of physical volumé® usingL? lattices. The lattice coupling
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appearing in the gauge actionfis= L //¢; the continuum limit at a fixed physical lengths taken

by extrapolating td. — . We regulated the two flavors of massless two-component fermions in a
parity-invariant way using the Wilson-Dirac as well as overlap fermions f€hmion propagator

G for the parity-preserving Wilson-Dirac fermion is

0 X

G'=
X7 o

] ;7 X=Cy+B—m. (2.1)

C, is the two-component naive Dirac operatBris the Wilson term andn is tuned such that the
lowest eigenvalug; of iG™1 is minimum. We further improved it by adding a Sheikholeslami-
Wohlert term and by using HYP smeared links in the Dirac operator. The fampnapagatof for

the overlap fermion, which has the full(BN;) symmetry even at finite lattice spacing, is given in
terms of a unitary matri¥ = (X"X)~1X as?

Gl—[ 0 H] (2.2)
N IS o T '

We define the “eigenvalues of the Dirac operator” in either case to be thevalgesA; of iG™1
which are real. We used standard HMC for generatin§00— 1000 independent gauge con-
figurations at all the simulation points & ¢ < 250). Using Wilson-Dirac fermions we studied
Ni = 1,2,3 and 4. With the overlap fermion, we studisigl = 1. At each?, we used muItipIeL3
lattices (12< L < 24) in order to take the continuum limits.

3. Evidence from /¢-scaling of the low-lying eigenvalues of Dirac operator
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Figure 2: On the left panel, thé dependence of the six low-lying, continuum extrapolatégemvalues of
the overlap operator is shown. The Padé approximationsto#ldependence witlp = 1 are shown as the
solid curves. On the right panel, the likelihood of differ@alues of the exponerg, measured using the
X?2/DOF for the best fit of the Padé approximation with variousigalofp to the finite/ data, is shown.

1The Wilson massn = 1 in overlap simulations
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In a finite physical box, the spectrum of the Dirac operator is discretas, Tdne can talk about
the /-dependence of the individual low-lying eigenvalues. As we noted in thedaction, the-th
low-lying eigenvalue); will scale as/—3 when there is a condensaelf /3 scaling is not found,
we can conclude that a bilinear condensate is absent and instead weaiaritebmass anomalous
dimension of the scale-invariant theory; sintdias an engineering dimension of mass, the mass
anomalous dimensiopy, is pif A ~ ¢/ P~ andp < 1.

In the left panel of Figure 2, we show the dependence of the continutrapeiated values of
Ail as a function of 1/ for the six low-lying eigenvalues of the overlap operator in a log-log plot.
At any finite ¢ that we studied, the slo '(‘)’38/% is less than 2, the value that is expecteH i 0.

In fact, it is less than 1. We estimate the exponent of the power-law that beutgéen ag — oo
by describing thé-dependence of our data by

Al =("PE(1/0), (3.1)

with an unknown scaling correctiof. We approximaté= by a [1/1] Padé approximant. We
find it numerically stable to write the Padé approximant in terms of (tgff). The best fits of
the above ansatz with = 1 to the data are shown by the solid curves in the left panel of Figure
2. In the right panel, we show the?/DOF for such fits to the six low-lying eigenvalues as a
function of the exponenp. The valuep = 2 is clearly ruled out, which implies the absence of a
condensate. Assuming the theory does not generate other length scalels ag can estimate
the mass anomalous dimensign= p of the theory to be 1.0(2) from the same plot. Further, we
support the correctness of our result by comparingttiependence of the continuum extrapolated
low-lying eigenvalues of the two different lattice Dirac operators in Figur& perfect agreement
between the Wilson-Dirac and the overlap formalisms is seen. Due to suchesmant, we study
theN; = 2, 3,4 cases using only the Wilson-Dirac fermion.
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Figure 3: The plot compares thé-dependence of the first three low-lying eigenvalues, aéking the
continuum limit, using Wilson fermions (open symbols) andrtap fermions (filled symbols) for tHé; =1
case.

In Figure 4, we show thé-dependence of the continuum extrapolated smallest eigenvalue for
different number of flavordl; = 1,2, 3 and 4. The eigenvalues scale with a smaller expopexst
N; increases, consistent with the expectation thétsi= 1 does not have a bilinear condensate,
the Ny = 2,3,4 also would not. Thus QEDdoes not have a bilinear condensate for all non-zero
N¢. Again, assuming this means that QEI3 scale-invariant for alN¢, we estimate the mass
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Figure 4: The(-dependence of the smallest eigenvalue of the Wilson-ipacator folNs = 1,2, 3 and 4.
The expected scaling when a bilinear condensate is presént/ 2, is shown by the black straight line in
this log-log plot. The exponent for the asymptotid-scaling seems to decrease dsli

anomalous dimension to g = 1.0(2),0.6(2),0.37(6) and 0.28(6) folNs = 1,2, 3,4 respectively.
Surprisingly, this agrees with an analytical calculation [10kgfo ¢'(1/N?) where no assumption
about bilinear condensate is made; the analytical valuegsare 1.19,0.56,0.37 and 0.28 for
Nt = 1,2, 3 4 respectively.
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Figure5: (Left) The zero spatial momentum scalar correldddr) = (X(0)Z(t)) as a function of temporal
separation. The different lines are tangents to the correlator, witipsk(t), at varioug on the log-log plot.
(Right) The mass anomalous dimension giveryhit) = 1 —k(t)/2 is plotted as a function of the scale

The other way to obtain the mass anomalous dimension is to study the scalatooGé) =
(2(0)Z(t)) projected to zero spatial momentum. The correlator is shown as a function of the
temporal separatioh in the left panel of Figure 5. The first thing to notice is the concave-up
nature of the correlator. This indicates the absence of a mass-gamytiheliag out the presence
of another length scale in addition to a bilinear condensate. The slope on theglptpt, k(t) =
%&’g)), is related to a scale dependent mass anomalous dimepsioras ym(t) = 1 —Kk(t)/2.

This is shown as a function of/Lin the right panel of Figure 5. The mass anomalous dimension
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at the IR fixed point to which QEPwith N¢ = 1 flows to, isy* = lim¢_,« ym(t). We estimate by
an extrapolation that* = 0.8(1). This is consistent with the estimate 1.0(2) from the eigenvalues
described above. The agreement between two different appraacjieserves as a cross-check.

4. Evidence from Inverse Participation Ratio and number variance

Iy ~ ~26201)

log(¢) n

Figure 6: (Left) The ¢-scaling of the inverse participation ratipfor Ny = 1. The critical exponent of the
scaling isn = 0.38(1). (Right) The number variancg, is shown as a function af. A disagreement with
nonchiral random matrix model (black points) is seen. kdte critical linear rise is seen, whose slope
approacheg /6 shown as the black solid line.

The Inverse Patrticipation Ratio (IPR) is defined as

2= { [ 0w 07, @)

wherey, is the normalized eigenvector corresponding to the eigenvallierandom matrix mod-

els, which are ergodid, ~ ¢~3. Thus, if the theory has a condensate, the low-lying eigensystem
of the Dirac operator would be described by a random matrix model. Thu®Bedrresponding

to the low-lying eigenvalues should show @ scaling. This is another test for the presenc&.of
Instead, if the theory is scale-invariant, the finite size scaling of IPR would be/~3*1, where

n is a critical exponent. The exponentis related to a quantity called number variagewnhich
measures correlations between the eigenvalues. The number vatignges defined as the vari-
ance of the number of eigenvalues below a valughich on the average containigenvalues.

In ergodic random matrix model%,(n) ~ log(n). For a critical theoryz,(n) ~ (n/6)n, wheren

is the critical exponent from the IPR [11].

In the left panel of Figure 6, we have shown thscaling of IPR folN; = 1. For large/, the
onset of scaling is clearly seen. The scalintpis- ¢~2621) . Firstly, this rules out the ergodic 3
scaling. The theory has a non-zero critical exponert 0.38(1). As explained above, in a critical
theory,n should satisfy a critical relation to the slope of number variance. In the rigiel ud
Figure 6, we have showh(n) as a function ofh. Again, clearly there is a disagreement with the
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expectation from the nonchiral random matrix theory thereby ruling outemssate in another way.
We see a linear rise iB,(n) indicating a critical behavior. Aéis increased, the slope of the linear
rise seems to approacfy6, as shown by the black line in the figure. Thus, both the IPR>nd
show critical behavior, and also they satisfy the critical relation between the tw

5. Conclusions

In this talk, we presented convincing numerical evidences for the absdre bilinear con-
densate for alN¢. Instead, we found evidences for Q& be scale-invariant, and we estimated
the mass anomalous dimension at the infra-red fixed point at vaxiaus another work [12], we
established the presence of a condensate in the 't Hooft limit using the saimedsieve described
here. This suggests an interesting phase diagram ifNhé\;) plane whose one side is conformal
while the other side has a mass-gap, providing a powerful system tostanérthe generation of
mass in QFTs. We aim to present results on this in a future Lattice meeting.

The authors acknowledge partial support by the NSF under granterupiby-1205396 and
PHY-1515446.
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