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1. Introduction

The standard model (SM) of particle physics is almost symmetric under the combined op-
eration of charge-conjugation and parity (CP). In the hadronic sector, the violations come from
three sources: a possible term proportional to QCD instanton density, possible CP-violating mass
matrix of the quarks, and a complex phase in the Cabibo-Kobayashi-Maskawa (CKM) quark mix-
ing matrix describing the weak interactions. The axial U(1) anomaly makes the first two of these
physically equivalent, and the combined effect, usually parameterized by a quantity called θ̄ , is
experimentally constrained to an unnaturally small value. The physical effect of the CKM phases
is also small, since it is suppressed by the quark masses.

On the other hand, the cosmological abundance of baryons over anti-baryons needs a larger
CP-violation. If this violation is in the hadronic physics, it could lead to an experimentally observ-
able neutron electric dipole moment (nEDM). In fact, upcoming nEDM searches have the potential
to constrain many theories of physics beyond the SM (BSM). Most of these theories modify the
standard model at a high energy scale, MBSM. A fruitful way of constraining these theories is to
parameterize their low energy effects in terms of an effective field theory expansion in terms of
operators whose contributions are suppressed by increasing inverse powers of this high scale.

The leading CP-violating effects in this expansion are encoded in θ̄ , discussed above. Beyond
this, the dimension 5 electric dipole moment (qEDM) and the chromo-electric dipole moments
(qCEDM) of fermions are suppressed by vEW/M2

BSM, where vEW is the scale of the weak interac-
tions. In many BSM theories, the coefficients of these terms have the same origin as the Yukawa
couplings in the standard model, and hence are unnaturally small. In such cases, their contribution
might be comparable to some of the dimension 6 operators suppressed only by 1/M2

BSM, which
include the Weinberg ‘gluon chromo-electric’ operator and various four-Fermi operators. Never-
theless, because of their lower dimension, the effects of the qEDM and qCEDM should, in any
case, be studied separately. In previous work [13, 5, 6], we have extensively studied nEDM from
the qEDM. In this work, we describe preliminary studies of nEDM from qCEDM.

2. Lattice Methodology

nEDM can be extracted by expanding the matrix element of the vector current Vµ in the neutron
state in terms of the Lorentz covariant form-factors, F1,2,3,A:

uN

[
γµ F1(q2)+ i

[γµ ,γν ]

2
qν

F2(q2)

2mN
+(2imNγ5qµ − γµγ5q2)

FA(q2)

m2
N

+
[γµ ,γν ]

2
qνγ5

F3(q2)

2mN

]
uN ,

(2.1)
where we have used the Euclidean notation (γ2

µ = 1, q4 = i(m−E)) and nEDM is given by F3/2mN .
As described previously [8], the lattice calculation of the neutron matrix element in the presence of
a qCEDM can be described diagrammatically as
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Here the two kinds of propagators P and Pε refer to the inverse of the Dirac operator describing the
propagation of quarks in a gauge background without and with a CP-violating operator (qCEDM or
the CP-violating mass term, ψ̄γ5ψ) with coefficient ε ≡ ε5. It is to be noted that the O(ε2) terms are
ultraviolet divergent when propagators include operators of dimension greater than 4, so one should
check that ε is chosen small enough to stay in the linear regime in the ultraviolet regulated theory.

In this preliminary work, we neglect all the diagrams with disconnected contributions includ-
ing the reweighting exponential factor. We use two ensembles with lattice spacings a ≈ 0.12 and
0.09 fm in this work: both generated with the 2+1+1 flavors of HISQ [10] quarks and with the pion
mass, Mπ ≈ 310 MeV by the MILC collaboration [4]. We use clover [12] valence quarks, with Wil-
son parameter κ = 0.1272103 and 0.1266265 and clover coefficient cSW = 1.05094 and 1.04243,
respectively, on the two ensembles, and use the AMA variance reduction techniques [3, 9] with 64
low-precision (relative residual error 10−3) and 4 high-precision (residual 10−8) inversions on each
of 400 and 270 configurations in the two ensembles respectively. In each case, we calculate the
matrix elements with both the qCEDM and the CP-violating pseudoscalar mass term since these
operators mix under renormalization.

3. Two point function

We construct the nucleon operator, χ , out of covariant Gaussian-smeared [1] quark fields, qc
f

as χ ≡ εabd [qaT
1 Cγ5

1
2(1± γ4)qb

2]q
d
1 , where f and c denote flavor and color labels and C denotes

the charge conjugation matrix, and the sign is chosen to be positive and negative for forward and
backward propagation. We chose a smearing radius 5.0 and 6.5 lattice units on the a ≈ 0.12 fm
and 0.09 fm lattices (with 46 and 85 Gaussian hits) respectively, so that the physical radius is about
0.6 fm. Because of the spectral representation and Lorentz invariance, the nucleon propagator
〈0|χ(~p, t)χ̄(~p,0)|0〉 approaches e−p4teiαγ5(/p+m)eiαγ5 as t→∞, where α = 0 unless CP is violated.
We can use the measured two point function to provide an estimate of α , the phase in the neutron
wavefunction, as a function of the CP-violation parameter in the action. In Fig. 1, we show the
signal in the extraction of this quantity from the neutron two-point correlator.

In Fig. 2, we show that the measured value of α is roughly linear in ε around ε ∼ 0.005
for both the qCEDM and the CP-violating quark mass operators. Based on this, we choose ε ≈
(30 f m)−1a≈ 6.6MeVa≈ 0.36ma, where m is the quark mass for further analysis.

Since the chiral and CP rotations do not commute, one can use a chiral rotation of the fermion
fields to remove the CP-violation in the mass term [7]. Such a rotation changes the mass term
(ma)2→ (ma)2+ε2 and introduces an O(a) CP-violation from the non-invariant Wilson and clover
terms in the action that we discuss later. In Figure 3 we show the effective mass plots for the
pion propagator: as expected, addition of the CP-violating mass term affects the pion mass much
more than the addition of the higher dimensional qCEDM operator. Quantitatively, in the lowest
order chiral perturbation theory (χPT), one would expect the pion mass to increase by a factor of√

1+ ε2

(ma)2 . In Tab. 1, we show that this expectation is indeed consistent with the measurement.

4. Three-point functions

The neutron three-point function of the vector-current component, 〈V3(q)〉 ≡ 〈0|NV3(q)N̄|0〉,
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Figure 1: Connected α for the a≈ 0.09 fm (top) and 0.12 fm (bottom) ensembles with ε = 0.003 and 0.004
respectively. The left figures show the α due to the qCEDM operator and the right ones give the analogous
quantity αγ5 due to the CP-violating mass term.

Figure 2: Linearity of connected α with ε .

projected with P ≡ (1+γ4)(1+ iγ5γ3)/2 can be calculated with the fermion source having a single
non-zero spin component. Straightforward calculation reveals that with this projection the Lorentz-
invariant form factors are

TrP〈V3(q)〉 ∝ imNq3[F1−
q2

2mN
F2]+α[mN(EN−mN)(F1 +F2)+

q2
3

2
F2]

− 2i(q2
1 +q2

2)FA−
q2

3
2

F3 , (4.1)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
2
5

qCEDM contribution to nEDM Tanmoy Bhattacharya

Figure 3: Pion effective mass for a≈ 0.12 fm (left) and a≈ 0.09 fm (right) ensembles.

a12m310 a09m310
1

2κ
−4 -0.0695 -0.05138

1
2κc
−4 -0.08058 -0.05943

am≡ 1
2κ
− 1

2κc
0.01108 0.00859

ε 0.004 0.003
aM0

π 0.1900(4) 0.1404(3)
aMqCEDM

π 0.1906(4) 0.1407(3)
aMP

π 0.1961(4) 0.1450(3)

aM0
π

√
1+ ε2

(ma)2 0.1959(4) 0.1450(3)

Table 1: The pion mass in the theory without CP-violation, M0
π , in the theory with qCEDM operator,

MqCEDM
π , and in the theory with CP-violating mass term MP

π . Also provided are the quark mass, am, and the
coefficient, ε , of the CP-violating operator. MP

π is compared to its lowest order χPT expectation given in the
last row.

which, along with the determination of α from the two-point function, can be used to extract F3.
In Fig. 4, we show the signal in the determination of the connected contribution to the isovector
Fq,d−u

3 , q =U,D, from various source-sink separations for CP-violation, in the up and down quark
sectors respectively, arising due to the qCEDM or parity-violating mass terms. In each case, the
calculation is shown for two values of momenta, ~q = (0,0,1) and (0,0,2). A plateau is visible
in all these calculations, especially at large source-sink separation, except for the coarse ensemble
with CP-violating mass term and one unit of momentum.

It is, however, known that a CP-violating mass term should result in zero contribution to F3

from connected diagrams [2, 11], since such a mass term can be rotated away by a chiral rotation.
That argument, however, ignores O(a) effects. In fact, at tree-level, we can write

T̄ (αε ,ζε)
[
/DW (r,χ)+mei ε

m γ5
]

T (αε ,ζε)= zε /DW

(
rε

zε

,
χε

zε

)
+mε + iaξ̃εΣ

µνGµνγ5+O(a2) , (4.2)

where

/DW (r,χ)≡ /D+a(rD2 +χΣ
µνGµν) , T (α,ζ )≡ ei ζ

2 a[ /DW (r,χ)−mei ε
m γ5 ]γ5ei α

2 γ5 ,

T̄ (α,ζ )≡ γ0T †(α,ζ )γ0 , ζε ≡ r tan
ε

m
1

1+ ramcos ε

m
, αε ≡− tan−1 ζε

r
,
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Figure 4: Connected F3 from qCEDM (top two rows) and CP-violating mass (bottom two rows) measured
on a≈ 0.12 fm (left two columns) and 0.09 fm (right two columns) ensembles.

zε ≡ 1+2amζε sin
ε

m
, ξε ≡−

ε

m
+ tan−1

(
gr
2χ

tan
ε

m

)
, ξ̃ε ≡

χε

zε

sinξε ,

mε ≡ m

√
1+2amζε sin

ε

m
+ζ 2

ε (am)2 , rε ≡ r sec
ε

m
, χε ≡ χ sec

(
ξε +

ε

m

)
, (4.3)

and g is the strong coupling constant. Because of this one expects that the on-shell connected
vector-current matrix element in a Wilson-clover theory with CP-violating mass term should be
proportional1 to the same matrix element in a theory with CP-violation arising from the qCEDM
operator and a slightly shifted mass m, Wilson parameter r, and clover coefficient χ . Ignoring these
small O(ε2) shifts in the fermion parameters, one would then expect the ratio of the F3 calculated
with the CP-violating mass term and with the qCEDM operators to be proportional. In Fig. 5, we
show that this expectation is actually satisfied by the lattice data.

5. Conclusion

We have shown reasonable signal-to-noise ratio for calculating the connected F3 from qCEDM
operator on our ensembles. The significant ultraviolet divergent mixing of this operator is with the
CP-violating mass term: we showed that the latter is almost proportional to the contribution of the
qCEDM operator itself; so, for these connected contributions, the power divergence is essentially
multiplicative. The connected contribution of the CP-violating mass term to F3 vanishes in formu-
lations with exact chiral symmetry, but the proportionality observed here is expected to hold for

1up to O(a2).
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Figure 5: Ratio of F3 from CP-violating mass to that from qCEDM from a ≈ 0.12 fm (left two columns)
and 0.09 fm (right two columns) ensembles.

any residual chiral violation. As a result, the connected contribution to F3 from qCEDM has only
multiplicative power divergences in any formulation.
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