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Non-perturbative investigations of N = 4 supersymmetric Yang–Mills (SYM) formulated on
a space-time lattice have advanced rapidly in recent years. In addition to playing important roles in
holographic approaches to quantum gravity, investigations of the structure of scattering amplitudes,
and the conformal bootstrap program,N = 4 SYM is also the only known four-dimensional theory
for which a lattice regularization can exactly preserve a closed subalgebra of the supersymmetries
at non-zero lattice spacing a > 0 [1, 2, 3, 4, 5]. Based on this lattice construction we have been
pursuing large-scale numerical investigations of N = 4 SYM that can in principle access non-
perturbative couplings for arbitrary numbers of colors N . Here we discuss a selection of our latest
results from this work in progress.

Last year we introduced a procedure to regulate flat directions in numerical computations by
modifying the moduli equations in a way that preserves the single exact supersymmetry at non-zero
lattice spacing [6, 7, 8]. This procedure produces a lattice action that exhibits effective O(a) im-
provement, with significantly reduced discretization artifacts that vanish much more rapidly upon
approaching the continuum limit. We have implemented this improved action in our parallel soft-
ware for lattice N = 4 SYM [9], and are now employing it in the large-scale numerical com-
putations discussed in this proceedings. We make our software publicly available to encourage
independent investigations and the development of a lattice N = 4 SYM community.1

In this proceedings, after briefly reviewing the improved action we revisit our lattice investiga-
tions of the static potential [10, 11]. In addition to the new lattice action, we also improve the static
potential analysis itself by applying tree-level lattice perturbation theory. We observe a coulombic
potential V (r) = A− C/r and our preliminary results for the Coulomb coefficient C(λ) are con-
sistent with continuum perturbative predictions. A separate contribution to these proceedings [12]
discusses our efforts to investigate S duality on the Coulomb branch ofN = 4 SYM where some of
the adjoint scalar fields acquire non-zero vacuum expectation values leading to spontaneous sym-
metry breaking. These efforts involve measuring the masses of the elementary W boson and the
corresponding dual topological ’t Hooft–Polyakov monopole. Ref. [12] also provides an update on
our ongoing investigations of the Konishi operator scaling dimension.

Improved lattice action for N = 4 SYM

Our lattice formulation of N = 4 SYM is based on the Marcus (or Geometric-Langlands)
topological twist of the continuum theory [13, 14]. This produces a U(N ) = SU(N ) ⊗ U(1)
gauge theory with a five-component complexified gauge field Aa in four space-time dimensions.
We discretize the theory on the A∗

4 lattice, exactly preserving the closed subalgebra {Q,Q} = 0
involving the single twisted-scalar supercharge Q. The improved lattice action that we use is [6]

S =
N

2λlat

∑
n

{
Tr

[
Q

(
χab(n)D(+)

a Ub(n) + η(n)
{
D(−)

a Ua(n) + GO(n)IN

}
− 1

2
η(n)d(n)

)]
− 1

4
Tr

[
εabcde χde(n + µ̂a + µ̂b + µ̂c)D

(+)
c χab(n)

]
+ µ2

∑
a

(
1
N

Tr
[
Ua(n)Ua(n)

]
− 1

)2 }
,

where the operator O in the first line is O =
∑

a 6=b (detPab − 1) and Pab = P∗
ba is the ori-

ented plaquette built from the complexified gauge links Ua in the a–b plane. Repeated indices are
1http://github.com/daschaich/susy

1

http://github.com/daschaich/susy


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
2
1

Latest results from lattice N = 4 supersymmetric Yang–Mills David Schaich

summed and the forward/backward finite-difference operators D(±)
a both reduce to the usual co-

variant derivatives in the continuum limit [3, 4]. All indices run from 1 through 5, corresponding
to the five symmetric basis vectors of the four-dimensional A∗

4 lattice [2, 11].
When µ,G = 0 this action has the same form as the twisted continuum theory [13, 14]. These

two tunable couplings are introduced to stabilize numerical calculations by regulating flat directions
and exact zero modes. The scalar potential with coupling µ lifts flat directions in the SU(N ) sector,
while the plaquette determinant with coupling G does so in the U(1) sector. Although non-zero
µ softly breaks the Q supersymmetry, the plaquette determinant deformation is Q exact. This Q-
exact deformation results from the general procedure introduced in Ref. [6], which imposes the Q
Ward identity

∑
nO(n) = 0 by modifying the equations of motion for the auxiliary field,

d(n) = D(−)
a Ua(n) −→ d(n) = D(−)

a Ua(n) + GO(n)IN . (1)

With O =
∑

a 6=b (detPab − 1) this Ward identity gives 〈Re detPab〉 = 1 after averaging over the
lattice volume, while 〈Im detPab〉 is constrained by the scalar potential. Thanks to the reduced soft
supersymmetry breaking enabled by this procedure, Q Ward identity violations vanish ∝ (a/L)2

in the continuum limit [8]. This is consistent with theO(a) improvement expected sinceQ and the
other lattice symmetries forbid all dimension-5 operators [6].

With µ,G = 0 the moduli space of the lattice theory survives to all orders of lattice perturba-
tion theory [15]. If nonperturbative effects such as instantons also preserve the moduli space, then
the most general long-distance effective action Seff contains only the terms in the improved action
above [11, 16]. In addition, all but one of the coefficients on the terms in Seff can be absorbed by
rescaling the fermions and the auxiliary field, leaving only a single coupling that may need to be
tuned to recover the full symmetries of N = 4 SYM in the continuum limit.

Tree-level improvement for the lattice N = 4 SYM static potential

We extract the static potential V (r) from the exponential temporal decay of rectangular Wilson
loops W (~n, t) ∝ exp [−V (r)t]. To easily analyze all possible spatial separations ~n we gauge fix
to Coulomb gauge and compute W (~n, t) ≡ Tr

[
P (~x, t, t0)P †(~x + ~n, t, t0)

]
, where P (~x, t, t0) is

the product of complexified temporal links Ut at spatial location ~x, extending from timeslice t0 to
timeslice t0 + t.

The static potential analysis can be improved by refining the scalar distance r associated with
the spatial three-vector ~n. This is a long-established idea in lattice gauge theory, dating back at least
to Ref. [17]. Previously we identified the scalar distance as the euclidean norm of rµ =

∑3
i=1 niêiµ,

where each ê is a basis vector of the A∗
4 lattice. Because these basis vectors are not orthogonal,

rµ is a four-vector in physical space-time even though ~n is a three-vector displacement on a fixed
timeslice of the lattice.

To obtain tree-level improvement we instead extract the scalar distance rI from the Fourier
transform of the bosonic propagator computed at tree level in lattice perturbation theory. Then
V (rI) = 1/(4πrI) to this order in lattice perturbation theory. Using the tree-level lattice propagator
computed in Ref. [15], we have

1
r2
I

≡ 4π2G(r) = 4π2

∫ π/a

−π/a

d4k

(2π)4
cos(r · k)

4
∑4

µ=1 sin2(k · êµ/2)
. (2)
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In this expression r is the same four-vector discussed above while kµ = 2π
∑4

i=1 piĝiµ and the
dual basis vectors ĝ are defined by êi · ĝj = êiµĝjµ = δij . The last identity allows us to replace
r · k = 2π~n · ~p and k · êµ/2 = πpµ, more directly relating rI to the three-vector displacement ~n.

On a finite L3×Nt lattice, the continuous integral in Eq. 2 would reduce to a discrete sum over
integer pµ. Since we have not yet computed the zero-mode (p = 0) contribution to the discrete
sum, here we determine rI by numerically evaluating the continuous integral that corresponds to
the infinite-volume limit. Ref. [17] argues that infinite-volume rI can safely be used in finite-
volume lattice calculations, without affecting either the Coulomb coefficient or the string tension.
In agreement with this argument, we checked that both approaches give us similar results even
though we currently omit the zero-mode contribution from the finite-volume computation.

We experimented with three integrators to numerically evaluate the four-dimensional integral
in Eq. 2, obtaining consistent results but significantly different performance. For our problem the
most efficient integrator we were able to find was the Divonne algorithm implemented in the
Cuba library [18]. This is a stratified sampling algorithm based on CERNLIB routine D151 [19].
Especially for large rI Divonne’s evaluation of Eq. 2 converged several orders of magnitude
more rapidly than two versions of the vegas algorithm [20] that we tested. These two versions
of vegas both provide some improvements over the original algorithm, and are implemented in
Cuba and at http://github.com/gplepage/vegas.

Latest results for the static potential

In Fig. 1 we demonstrate the effects of tree-level improvement for latticeN = 4 SYM compu-
tations of the static potential. All four plots in this figure consider 83×24 lattices generated using
the improved action at ’t Hooft coupling λ = λlat/

√
5 = 1/

√
5. The top row of plots analyze V (r)

with the scalar distance defined by the naive euclidean norm of rµ. In the top-left plot we show the
potential itself for gauge groups U(N ) with N = 2, 3 and 4, including fits to the Coulomb form
V (r) = A− C/r. It is possible to see that the first points at r ≈ 0.9 are consistently below the fit
curves, while the next points at r ≈ 1.1 are well above them. This scatter of the points around the
N = 2 fit is isolated in the top-right plot where we show r V −A

C .
It is precisely this scatter at short distances that tree-level improvement ameliorates, as shown

in the bottom row of plots. These results come from the same gauge configurations and measure-
ments as those in the top row, with the only change in the analysis being the use of rI obtained from
Eq. 2 via the Divonne integrator in Cuba. There is not a one-to-one correspondence between the
points in the two rows of plots. Several ~n that produce the same euclidean norm (and are therefore
combined in our original analyses) lead to distinct rI . At the same time, the finite-volume effects
also change. We drop any displacements that extend at least halfway across the spatial volume of
the lattice. When working with euclidean norms for L = 8, this imposes r < r(1, 1, 4) ≈ 3.3,
whereas rI < rI(0, 0, 4) ≈ 3.8.

In Fig. 2 we collect preliminary results from tree-level improved static potential analyses em-
ploying our new ensembles of gauge configurations generated using the improved action. On 83×24
lattices we consider three U(N ) gauge groups with N = 2, 3 and 4, while to explore finite-volume
effects we also carry out 123×24 and 163×24 calculations for N = 2. (Because the larger volumes
also help to control discretization artifacts at stronger couplings, so far we have only generated

3
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Figure 1: Unimproved (top) and tree-level improved (bottom) results for the static potential from lattice
N = 4 SYM, on 83×24 lattices at ’t Hooft coupling λ = λlat/

√
5 = 1/

√
5. The plots on the left show V (r)

for U(N ) gauge groups with N = 2 (solid red), 3 (dashed blue) and 4 (dash-dotted black), including fits to
the Coulomb form V (r) = A− C/r (all shifted so that A = 0). Those on the right extract the scatter of the
N = 2 points around the fit by plotting r V−A

C . Tree-level improvement significantly reduces this scatter at
short distances, allowing more accurate and reliable analyses.

Figure 2: Preliminary lattice N = 4 SYM results from tree-level improved static potential analyses. Left:
The Coulomb coefficient C vs. the ’t Hooft coupling λ = λlat/

√
5 on 83×24 lattices for U(N ) gauge groups

with N = 2 (gold ×s), 3 (blue triangles) and 4 (black ∇s), along with N = 2 results from larger L3×24
volumes with L = 12 (red squares) and 16 (green circles). The results are consistent with perturbation
theory, and the agreement improves with increasing N and L. Right: The string tension σ obtained from
the same ensembles upon fitting V (r) = A− C/r + σr. The small negative results move toward zero as L

increases, confirming that the static potential remains coulombic.

4
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163×24 lattices at the strongest λ = 4/
√

5 included in this analysis.) A notable finite-volume
effect that we observe is a small negative value for the string tension σ when we fit the static po-
tential to the confining form V (r) = A − C/r + σr. We can see in Fig. 1 that such a negative
string tension would improve the fit for distances near the finite-volume cutoff. As L increases
we gain data at larger distances, which more effectively constrain σ. In the right plot of Fig. 2 we
see that the string tension moves toward zero as L increases, confirming that the static potential is
coulombic at all couplings we consider.

We therefore fit the static potential to the Coulomb form V (r) = A−C/r to obtain the results
for the Coulomb coefficient C in the left plot of Fig. 2. For the same gauge groups and lattice
volumes discussed above our results are consistent with the next-to-next-to-leading-order (NNLO)
perturbative prediction from Refs. [21, 22, 23]. The agreement with perturbation theory tends to
improve as N and L increase, especially at the strongest ’t Hooft coupling λ = 4/

√
5 where the

larger volume helps control discretization artifacts.

Next steps for lattice N = 4 SYM

We are near to finalizing and publishing our tree-level improved analyses of the lattice N = 4
SYM static potential based on the improved lattice action introduced last year and summarized
above. In addition we are making progress analyzing the anomalous dimension of the Konishi op-
erator, developing a variational method to disentangle the Konishi and supergravity (20′) operators
as described in Ref. [12]. We continue to investigate the possible sign problem of the lattice theory,
as well as the restoration of the other supersymmetriesQa andQab in the continuum limit. Finally,
Ref. [12] also presents a new project to study S duality on the Coulomb branch of the theory, by
measuring the masses of the W boson and the corresponding dual topological ’t Hooft–Polyakov
monopole. Ideally this Coulomb branch investigation will allow non-perturbative lattice tests of
S duality even at ’t Hooft couplings relatively far from the self-dual point λlat = 2πN

√
5 ≈ 14N .
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