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1. Introduction

Although the application of lattice formulation to supersymmetric (SUSY) theory is halfway,

the lattice numerical analysis could lead to deeper understanding of SUSY nonperturbative phe-

nomena [1]. In this study, we perform numerical simulations for the two dimensional N = (2,2)

SYM theory on curved background with a nontrivial topology.

In the continuum two dimensional N = (2,2) SYM, the U(1)A symmetry is anomalously

broken due to the fermion measure in the partition function. The U(1)A is expected to be also

anomalous on the lattice and be hidden in the pfaffian obtained by integrating out fermions. It is

notable that, due to the anomaly, the partition function itself gets ill-defined. In order to obtain

reasonable and well-defined results, we propose a new phase-quenching method, which we call

the anomaly-phase-quenching(APQ)[5]. Here, the Pfaffian phase associated with U(1)A anomaly

is cancelled by inserting appropriate operators (called “compensators") while the residual Pfaffian

phase is ignored as with the standard phase-quenching procedure. Since the latter Pfaffian phase

is shown to have no influence on expectation values on the torus we speculate this quenching

procedure works.

We apply APQ to calculation of the Ward-Takahashi identity associated with exact SUSY on

the lattice and obtain a result consistent with the analytical investigation. Moreover, we investigate

the origin of U(1)A anomaly by looking into eigenstates of the Dirac operator and identify the

pseudo zero-modes responsible for the U(1)A-anomaly Pfaffian phase.

2. Two dimensional SYM on discretized spacetime

The SU(Nc) SYM action on a polyhedron has been constructed [3] based on the Sugino

model[2]. In this theory, field components are defined on elements of a polyhedron, namely, on

sites, links, and faces. A scalar SUSY Q is preserved and it has nilpotency up to complexified

gauge transformation, Q2 = δφ .

The action is defined as

S0 = QΞ ≡ Q

[

NS

∑
s=1

αsΞs +
NL

∑
l=1

αlΞl +
NF

∑
f=1

α f Ξ f

]

, (2.1)

Ξs =
1

2g2
Tr

[

1

4
ηs[Φs,Φ̄s]

]

, Ξl =
1

2g2
Tr

[

−iλl(UlΦ̄tip(l)U
−1
l − Φ̄org(l))

]

,

Ξ f =
1

2g2
Tr [χ f (Yf − iβ f Ω(U f ))] , (2.2)

where g2 is a coupling constant, αs,l, f and β f are arbitrary parameters, and NS,NL,NF are the

number of sites, links, and faces, respectively. In this study, we choose αs,l, f and β f as unity.

The complex scalar fields Φs and Φ̄s are defined on sites, and the link fields Ul are on oriented

links, and the auxiliary fields Yf are on faces. In addition, fermions ηs,λl,χ f also live on sites,

links, and faces, respectively. The symbols org(l) and tip(l) denote the origin and tip of the link l,

respectively. U f is a Wilson loop along the edges surrounding the face f . Φ f is a scalar field on a

representative site of the face. To eliminate unphysical degenerate vacua[4], we adopted

Ω(U f ) =
1

m

[

S
−1(Um

f )C (Um
f )+C (Um

f )S
−1(Um

f )
]

,

(

m ≥
Nc

4

)

, (2.3)
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where S (U f ) =−i(U f −U−1
f ) and C (U f ) =U f +U−1

f . The SUSY transformation is defined as,

QΦs = 0, QΦ̄s = ηs, QUl = iλlUl , QYf = [Φ f ,χ f ],

Qηs = i[Φs,Φ̄s], Qλl = i(UlΦtip(l)U
−1
l −Φorg(l)+λlλl), Qχ f = Yf . (2.4)

Since the action has a Q-exact expression, it is trivially invariant under the SUSY transformation.

In addition, the transformation is closed on each elements (sites, links and faces) of the polyhedron,

hence the action is also Q-invariant within each of them. A SUSY breaking mass term is needed to

control the flat direction of the scalar fields, which is introduced as

Sµ =
µ2

2
∑

s

Tr(ΦsΦ̄s), (2.5)

where µ2 is a mass parameter.

3. U(1)A anomaly and the pfaffian phase

We now discuss the U(1)A anomaly and its relation with a pfaffian phase. The U(1)A transfor-

mation in the continuum SYM theory is defined as

Aµ → Aµ , Φ → e2iθ Φ, Φ̄ → e−2iθ Φ̄, Y → Y,

λµ → eiθ λµ , η → e−iθ η , χ → e−iθ χ, (3.1)

which is anomalous as mentioned above. The U(1)A is also anomalous on the lattice. Since the

anomaly arises from the fermion measure, a Pfaffian phase of the Dirac operator obtained after

integrating out fermions is responsible for it. To clarify it, we define the partition function on the

lattice as

I =
∫

D~BD~F e−S0,b−S0, f−Sµ =
∫

D~BPf(D)e−Sb , (3.2)

with Sb = S0,b + Sµ , where S0,b and S0, f are the bosonic part and fermionic part of the action

(2.1), D~B and D~F are the integrate measure of bosons and fermions, respectively, and Pf(D) is

the pfaffian of the Dirac operator. The partition function is not U(1)A neutral due to the fermion

measure: the measure of the partition function have the following net U(1)A charge,

[D~BD~F]A = (N2
c −1)χh, (3.3)

where χh is the Euler characteristics. After integrating out the fermions, the Pfaffian has a nontrivial

phase

Pf(D) = |Pf(D)|eiθpf , θpf = θA +θ , (3.4)

where θA is the U(1)A-anomaly-induced phase, which will be defined later, and θ is a residual

phase apart from the U(1)A phase.

As Eq. (3.3) indicates, the anomaly directly reflects the number of fermionic degrees of free-

dom on the sites, links and faces: Nonzero Euler characteristics means that sum of the number

of fermion degrees freedom on sites and faces is different from those on links. Unless the Euler

characteristics is zero, the partition function is not U(1)A neutral and becomes ill-defined. We thus

need to define U(1)A neutral definitions of partition function and expectation values.
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For our purpose, we consider the following procedure:

Firstly, we introduce an operator A which satisfies gauge invariance, exact SUSY invariance,

and [A ]A = −(N2
c − 1)χh. It is clear that this operator, which we call the “compensator", has a

U(1)A charge canceling out that from the fermion measure. We define the U(1)A anomaly-induced

phase θA through A = |A|e−iθA . For later convenience, we introduce two types of compensators,

Atr =
1

NS

NS

∑
s=1

(

1

Nc

Tr(Φs)
2

)−
N2

c −1
4

χh

,

AIZ =
1

Nl

Nl

∑
l=1

(

1

Nc

Tr
(

2Φorg(l)UlΦtip(l)U
†
l +λlλl(UlΦtip(l)U

†
l +Φorg(l))

)

)−
N2

c −1
4

χh

. (3.5)

Although both operators have the same U(1)A charge, the second operator includes not only the

scalar field but also fields on links. Since the Φ̄s is related to ηs through Q and the anomaly is

caused by remained zeromodes of ηs and χ f , the first operator might be effective for h = 0. In the

same sense, it is better to employ the second operator for h = 2 because the anomaly is induced by

those of λl .

Secondly, we introduce the new quenching procedure for expectation values of operators O as

〈O〉q̂ ≡ 〈OeiθA〉q, 〈O〉q ≡
1

Zq

∫

D~BO|Pf(D)|e−Sb . (3.6)

where Zq is the quenched partition function. this quenching procedure 〈O〉q̂ ignore only the Pfaffian

phase unrelated to the U(1)A anomaly. This residual Pfaffian phase is shown to have no influence

on expectation values on the torus in the literature, and we expect this procedure works on generic

backgrounds. We call it Anomaly-phase-quenching(APQ).

Thirdly, we combine the above two methodologies: We insert the compensator into the ex-

pectation values of observables with applying APQ method. Here, the anomaly-induced Pfaffian

phase is cancelled by the compensator while the residual phase can be ignored by APQ.

We end up with a “good" definition of the expectation values in the present discretized model.

We call the whole procedure the “APQ method". If we obtain a reasonable result on the expectation

value by this method, it means not only validity of the model but also validity of our quenching

method. In the present study, we numerically calculate the Ward-Takahashi(WT) identity for the

exact supersymmetry using the APQ method. We estimate the following identities,

〈S̃bAtr〉 +
µ2

2
∑

s

〈ΞTr(Φsηs)Atr〉−
N2

c −1

2
(NS +NL)〈Atr〉= 0, (3.7)

for h = 0 and

〈S̃bAIZ〉 +
µ2

2
∑

s

〈ΞTr(Φsηs)AIZ〉−
N2

c −1

2
(NS +NL)〈AIZ〉

−
N2

c −1

4
χh

〈 1

NL

NL

∑
l=1

1

Nc

Tr
(

λlλl

(

UlΦtip(l)U
†
l +Φorg(l)

))

×

(

1

Nc

Tr
(

2Φorg(l)UlΦtip(l)U
†
l +λlλl

(

UlΦtip(l)U
†
l +Φorg(l)

))

)−
N2

c −1
4

χh−1
〉

= 0, (3.8)
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for h = 2 background, where S̃b is the bosonic action after integrating out the auxiliary field Y . We

numerically calculate these WT identities based on the APQ method, where the expectation values

〈...〉 in the above equations are replaced by 〈...〉q̂.

h χh geometry NS NL NF shape of face a

0 2 tetra 4 6 4 T 0.7598

octa 6 12 8 T 0.5373

cube 8 12 6 S 0.4082

icosa 12 30 20 T 0.3398

dodeca 20 30 12 P 0.2201

1 0 3×3 reg.lat. 9 18 9 S 0.3333

4×4 reg.lat. 16 32 16 S 0.2500

5×5 reg.lat. 25 50 25 S 0.2000

2 -2 Right fig. 14 32 16 S 0.2500

Table 1: List of polyhedra and those topologies used in our simulations. The symbols in the fifth column

T, S, P express “triangle”, “square” and “pentagon”, respectively. The right figure shows the development

view used in our simulation for h = 2.

4. Numerical simulation

We perform Monte Carlo simulations of the SYM theory on background with h = 0,1,2

topologies. In this simulation, we not only confirm the WT identity of the exact SUSY which

depends on background topology but also verify the validity of the APQ method. Our setup for the

numerical simulations is presented in Tab.1.

The Fig.1 shows numerical results of the left-hand sides of the WT identities (3.7) and (3.8).

As definition of the compensators, we used eq.(3.5) for h = 0 and eq.(3.5) for h = 2. The numerical

results have good agreement with the theoretical predictions l.h.s. = 0 within error bars. Note

that this numerical check is nontrivial, because the WT identity is not satisfied if the compensate

operators is not inserted. Hence, this result also means that the APQ method does work.

The phase histogram obtained by Pf(D)A = |Pf(D)A |eiθ for h = 0 and h = 2 is shown in

Fig.2. This figure shows that two peaks appear around ±π/2 and the peaks become sharper as

taking the boson mass smaller. The existence of the peaks means that the sign problem due to the

U(1)A anomaly vanishes in the APQ method. In addition, the validity of quenching the residual

phase is shown by the result of the WT identity obtained by the APQ method.

We also identify the pseudo zeromodes responsible for the U(1)A anomaly and subtract these

contributions from the original pfaffian phase. The histogram of the phase of this subtracted pfaffian

Pf′(D) is presented in Fig.3. The result has quite sharp peaks around ±π both for h = 0 and for

h = 2. Hence, this fact shows that the anomaly-induced sign problem originates in the pseudo

zeromodes and vanishes by removing those contribution.

5. Summary and outlook

We performed the numerical simulation of the N =(2,2) SYM on discretized spacetime with a

nontrivial topology. In the theory, the U(1)A symmetry is generically broken by quantum anomaly

4
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Figure 1: The left hand side of the WT identities (3.7) (the panels (1) and (2)) and (3.8) (the panel (3)) in the

anomaly-phase-quenched approximation normalized by 1
2
(N2

c − 1)(NS +NL)〈A 〉q̂ against to µ2 for h = 0

(left), h = 1 (middle) and h = 2 (right). We have used the compensator Atr for h = 0 and AIZ for h = 2 while

we have set A = 1 for h = 1 since we do not need the compensator when h = 1.
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Figure 2: The histogram of the phase of Pf(D)Atr for the dodecahedron h = 0 (left) and Pf(D)AIZ for h = 2

(right). The mass parameters are µ2 = 0.01, 0.1 and 0.03.
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Figure 3: This histogram of the phase of the subtracted Pfaffian Pf′(D) for the dodecahedron (left) and the

double torus (right).
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and the partition function gets ill-defined. In order to make the partition function well-defined

and to obtain reasonable results, we introduced the anomaly-phase-quenched(APQ) method and

numerically calculated the Ward-Takahashi(WT) identity associated with the exact SUSY. Our re-

sults depending on topology of the background are consistent with the theoretical prediction, and

the validity of the APQ method is also verified. We investigated contribution of pseudo zeromodes

to the pfaffian phase. The phase has peaks, and the sign problem due to U(1)A anomaly vanishes

by inserting the compensators. Moreover, they become quite sharp after subtracting the pseudo

zeromodes from the original phase. This fact shows that the anomaly-induced sign problem and

the U(1)A anomaly originate in the pseudo zeromodes and vanish by removing those contributions.

The construction of the other two dimensional gauge theories such as N = (4,4) and N =

(8,8) is available in the similar way. Another interesting issue is to construct matter coupled

theories on a polyhedron. By adding chiral multiplets to the discretized SYM theory, the obtained

theory has a richer structure than the SYM theory. It will be interesting to understand how it

happens in the discretized theory and is now going.
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