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1. Introduction

Asymptotically free gauge theories with relatively few fermion degrees of freedom exist in
a chirally broken and confining phase, associated with a coupling that grows toward the infrared.
Increasing the number of fermion degrees of freedom can bring the running of the coupling to a
halt. An infrared-attractive fixed point (IRFP) appears [1] and the theory exists in an infrared-
conformal phase. The smallest number of flavors where the theory admits an IRFP is generally
referred to as the “sill” of the so-called conformal window.

With a number of flavors slightly below the sill, the theory is still chirally broken and confining.
But it is different from QCD in being nearly conformal. More precisely, the beta function is very
small near the energy scale where chiral symmetry breaking sets in. We saythat the theory has a
“walking,” rather than “running,” coupling.

Lattice simulations of walking theories have revealed the presence of a flavor-singlet scalar
meson that can be as light as the pions over a wide fermion-mass range (fora recent review, see
Ref. [2]). Notable examples include theSU(3) gauge theory withNf = 8 Dirac fermions in the
fundamental representation [3, 4] or with two flavors of sextet fermions [5]. We stress that, when
dealing with a theory with a very small beta function, deciding whether the theory is chirally broken
and confining, or, alternatively, infrared conformal, can be very challenging. Here we will assume
that the models mentioned above are indeed chirally broken in the continuum limit.

Walking theories have features which are attractive for extensions of theStandard Model that
involve a new strong interaction. The renormalized coupling is changing very slowly with en-
ergy scale even when its value is rather large. As a result, one sometimes finds large anomalous
dimensions, which, in turn, can lead to a very large enhancement of the corresponding operator.
This feature is desired when trying to reconcile flavor physics with experiment (for reviews, see
Refs. [6, 7, 8]). Having a very light scalar is an added benefit, because, within the context of
technicolor-like theories, it is a natural candidate for the Higgs particle.

Walking theories are also theoretically interesting. In particular, it is naturalto ask if the pres-
ence of the light singlet scalar meson is somehow connected to the smallness ofthe beta function.
Indeed, the running of the coupling reflects the breaking of classical scale invariance by the quan-
tum theory. When the beta function is small, the quantum breaking of dilatation symmetry is in
some sense also small. Here we will discuss the construction of a low-energyeffective action for
the pions together with the light singlet scalar meson [9]. A consistent low-energy description must
account for all the light states, and must incorporate the scalar meson which can be as light as the
pions. More generally, even if the pions will eventually become lighter than thescalar meson in the
chiral limit, such an effective description is appropriate whenever the scalar meson is much lighter
than all other states in the theory. The main challenge facing the construction isthat, in order to
build a systematic low-energy expansion, one has to quantify the violations ofdilatation symmetry
in the effective theory, and to be able to relate them to the microscopic theory insuch a way that
these violations are controlled by a small parameter. The light scalar, or “dilatonic meson,” then
becomes a pseudo Nambu-Goldstone boson of the approximate dilatation symmetry.
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2. Building an effective field theory

We start by reviewing the ingredients of standard chiral perturbation theory (for a review, see
Ref. [10]). The massless microscopic theory has chiral symmetry, whosespontaneous breaking
gives rise to Nambu-Goldstone bosons, the pions. When the fermions are given a non-zero mass,
the pions become massive, too, but they remain the lightest asymptotic states as long as the fermion
mass is small enough.

Let us assume that we haveNf Dirac fermions in the fundamental representation. This is a
complex representation (whenNc≥3), and the symmetry breaking pattern isSU(Nf )L×SU(Nf )R→
SU(Nf )V , whereSU(Nf )V is the diagonal subgroup. The lagrangian of the microscopic theory is

L
MIC(χ) =

1
4

F2 +ψ /Dψ +ψRχ†ψL +ψLχψR (2.1)

Hereχ is anNf ×Nf matrix-valued spurion,i.e., an external source field. As usual,ψR,L = 1
2(1±

γ5)ψ and ψR,L = 1
2ψ(1∓ γ5). Under a chiral rotation, the (dynamical) fermion fields and the

(external) spurion field transform according to

ψL,R → gL,RψL,R , ψL,R → ψL,Rg†
L,R , χ → gL χ g†

R , (2.2)

wheregL,R ∈ SU(Nf )L,R. The lagrangianL MIC(χ) is invariant when we apply the chiral transfor-
mation to all the fields including the spurion field. The lagrangian is also chirally invariant when
we turn off the external source by settingχ(x) = 0, andL MIC(0) is recognized as the lagrangian of
the massless theory. But we can also choose to set the chiral source to some non-zero “expectation
value,”χ(x) = m. NowL MIC(m) is no longer chirally invariant, and instead, under an infinitesimal
chiral transformation we haveδL MIC(m) = mδ (ψψ), which exhibits the explicit (soft) breaking
of chiral symmetry by the fermion mass term. We see the dual role of the chiral spurion. On the
one hand, it encodes the explicit breaking of chiral symmetry coming from the mass term. On the
other hand, it does so in a manner that assigns certain chiral transformation properties to the mass
matrix itself, thereby rendering the lagrangian of themassivetheory formally invariant. These same
transformation properties will next be used to constrain the structure of thechiral lagrangian.

At the leading order, the lagrangian of the low-energy effective theoryis

L
EFT =

f 2

4
tr(∂µΣ†∂µΣ)− f 2B

2
tr

(

χ†Σ+Σ†χ
)

. (2.3)

It depends on two low-energy constants (LECs):f andB. The dynamical effective fieldΣ takes
values in the cosetSU(Nf )L ×SU(Nf )R/SU(Nf )V , which is isomorphic toSU(Nf ). The effective
field Σi j is loosely identified with the fermion bilinear tr(ψL,iψR, j), and inherits its transformation
properties,

Σ → gL Σg†
R . (2.4)

It is easy to check that the chiral lagrangian (2.3) is invariant under the combined transformation of
Eqs. (2.2) and (2.4). Settingχ(x) = m> 0, it becomes

L
EFT = − f 2BmNf + tr

(

(∂µπ)2 +2mBπ2)+O(π4) , (2.5)
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where we have expanded the non-linear fieldΣ(x) = exp(2iπ(x)/ f ) around its classical vacuum
〈Σ〉 = 1. We see that at tree level, the pion mass is given byM2 = 2mB. The other LEC,f , is
the pion decay constant in the chiral limit (up to normalization conventions), as can be seen by
coupling the effective theory to an external axial gauge field.

Why does the leading-order chiral lagrangian (2.3) contain just two terms?The chiral la-
grangian provides a systematic expansion in the external momenta and in the fermion mass. De-
noting byδ the small expansion parameter, the power counting is

p2/Λ2 ∼ m/Λ ∼ δ . (2.6)

Herep2 stands for the inner product of any two external momenta. The reference scale is usually
taken to beΛ = 4π f . While being a dynamical, infrared scale of the microscopic theory,Λ may
be identified with the ultraviolet cutoff of the chiral lagrangian. This works because the mass of
the pions, which sets the energy scale probed by the effective lagrangian, tends to zero in the chiral
limit. At the leading order, we allow for terms of orderδ 1, and, after imposing the invariance under
chiral symmetry, this leaves us with just the two operators we have in Eq. (2.3).

We have seen how the spurionχ communicates information about the explicit breaking of
chiral symmetry between the microscopic and the effective theories. More generally, by taking
derivatives with respect toχ(x) and χ†(x) one defines a set of correlation functions that can be
computed in both theories and compared. The LECs of the effective theoryare fixed order by
order in the chiral expansion (2.6) by requiring that the effective theory reproduce the correlation
functions of the microscopic theory.

We now turn our attention to scale transformations, which act on both the coordinates and the
fields. Given some fieldΦ(x), its variation under an infinitesimal dilatation is

δΦ = xµ∂µΦ+sΦ , (2.7)

wheres is the scaling dimension ofΦ. In a theory containing gauge and fermion fields (but no
elementary scalar fields) the dilatation current is given by

Sµ = xνTµν , (2.8)

whereTµν is the energy-momentum tensor. Classically, the lagrangian of the massless theory
transforms into a total derivative under an infinitesimal dilatation, and the dilatation current is
conserved. Quantum mechanically, the dilatation current is not conserved. On shell, its divergence
is equal to the trace of the energy-momentum tensor [11]

∂µSµ = Tµµ ≡−T , (2.9)

whereT = Tcl +Tan, and

Tcl(m) = mψψ , Tan(m) =
β (g2)

4g2 F2 + γmmψψ . (2.10)

All quantities occurring on the right-hand side are the renormalized ones.β (g2) is the familiar beta
function, whileγm = γm(g2) is the mass anomalous dimension.Tcl is the classical divergence of the

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
0
5

EFT for pions and a dilatonic meson Yigal Shamir

dilatation current, which vanishes if the fermion mass does.Tan quantifies the quantum breaking of
scale symmetry, reflected primarily in the running of the coupling.

Following the example of chiral perturbation theory, our first task is to formally recover di-
latation invariance of the microscopic theory. To this end we introduce a new spurion fieldσ(x),
which we will call the dilaton. Unlike the homogeneous transformation rule (2.7), the infinitesimal
variation of the dilaton field is

δσ = xµ∂µσ +1 . (2.11)

The inhomogeneous term will play a crucial role below. The renormalized chiral source transforms
like an ordinary field, with the same anomalous dimension as the renormalized mass,

δ χ = xµ∂µ χ +(1+ γm)χ . (2.12)

The lagrangian of the microscopic theory becomes

L
MIC(σ ,χ) = L

MIC(χ)+σTan(χ)+O(σ2) , (2.13)

whereTan(χ) is obtained by the replacementm→ χ(x) in Eq. (2.10). The classical variation
of the lagrangian is absent thanks to the scale transformation properties ofthe chiral sourceχ.
Disregarding total derivatives, the variation ofL MIC(χ) is thus−Tan(χ), which in turn is cancelled
by the inhomogeneous term in Eq. (2.11) when we varyσTan(χ). In order to cancel the terms
proportional toσ (as well as to higher powers ofσ ) in the variation ofL MIC(σ ,χ), we would
need theO(σ2) terms on the right-hand side of Eq. (2.13). We will not attempt to derive these
higher order terms, because they do not play any role in the following.

In the case of the chiral lagrangian, we have seen that settingχ(x) = 0 reproduces the massless
theory, and, hence, exact chiral symmetry. The same is not true for scale symmetry. Setting
χ(x) = σ(x) = 0, the quantum variation of the massless theory becomes−Tan(0), namely, the trace
anomaly is(β (g2)/(4g2))F2. The massless quantum theory is not scale invariant, because the
coupling runs.

Moving on to the effective theory, we introduce a new effective field forthe dilatonic meson,
denotedτ(x). Its transformation rule is similar to that of the external dilaton source,

δτ = xµ∂µτ +1 , (2.14)

and again contains an inhomogeneous piece. Bothσ andτ are inert under chiral transformations.
As for the non-linear chiral fieldΣ, its scaling dimension must be zero because it is unitary, and its
variation under an infinitesimal dilatation is thus

δΣ = xµ∂µΣ . (2.15)

The next step is to construct the leading-order effective lagrangian. We are to write down all
possible operators that depend on the effective fields,Σ and τ, and on the source fields,χ and
σ , which are invariant under chiral and scale transformations. As a firstattempt, we follow the
same power counting as for the chiral lagrangian,i.e., we allow for all terms which are of orderδ 1

according to Eq. (2.6). The resulting leading-order lagrangian is

L̃ = L̃π + L̃τ + L̃m+ L̃d , (2.16)

4
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where

L̃π =
f 2
π
4

Vπ(τ −σ)e2τ tr(∂µΣ†∂µΣ) , (2.17)

L̃τ =
f 2
τ
2

Vτ(τ −σ)e2τ(∂µτ)2 , (2.18)

L̃m = − f 2
π Bπ

2
VM(τ −σ)eyτ tr

(

χ†Σ+Σ†χ
)

, (2.19)

L̃d = f 2
τ Bτ Vd(τ −σ)e4τ . (2.20)

L̃π and L̃τ are the kinetic terms for pions and for the dilatonic meson, respectively.L̃m is a
generalized chiral mass term, whereasL̃d accounts for the self-interactions of the dilatonic meson.
The presence of a separate set off andB parameters for the pions and for the dilatonic meson is to
be expected. As we discuss below, the exponenty in Eq. (2.19) compensates for the dependence of
the transformation rule of the renormalized chiral source on the mass anomalous dimension.

The trouble with this new effective lagrangian is the occurrence of the potentialsVπ ,Vτ ,VM and
Vd, each of which is an arbitrary function of its argument. The reason why these potentials are there
is that the inhomogeneous terms in the variations ofσ andτ cancel out in the differenceτ−σ . As a
result, any functionV(τ−σ) transforms homogeneously and has a scaling dimension equal to zero,
much like the non-linear fieldΣ. But unlike theΣ-dependent terms, whose structure is constrained
algebraically both by the unitarity ofΣ and by the non-abelian nature of chiral symmetry, the
abeliandilatation symmetry places no algebraic constraints on the form of theV(τ −σ) potentials.

At this point, our effort seems to have reached a dead end. The four potentials occurring in
the leading-order lagrangian can be Taylor expanded, and the expansion coefficients amount to an
infinite set of parameters. If all of them would remain in the leading-order lagrangian, then we will
have lost any predictive power.

To remedy this, we will reexamine the dynamics, seeking a way to extend the chiral power
counting (2.6) to a more powerful one that will impose a power-counting hierarchy on the Taylor
coefficients of these potentials.

3. A crude model

In this section we consider a crude model for the dynamics ofSU(Nc) gauge theories with
Nf fermions in the fundamental representation. As an approximation for the betafunction we will
consider the familiar two-loop expression [1],

∂g2

∂ logµ
= − b1

16π2 g4− b2

(16π2)2 g6 . (3.1)

In Fig. 1 we have plotted the two-loop beta function forNc = 3 and various values ofNf . The
Nf = 2 curve shows how the beta function looks in a QCD-like theory. In this casethe coefficients
b1,b2 in Eq. (3.1) are both positive, and the running becomes faster with growingg. As the number
of flavorsNf increases, we reach a range whereb1 > 0 > b2 (for Nc = 3 this range is given by
8.05 <∼ Nf < 16.5). With b1 > 0 the theory is still asymptotically free, and the beta function starts
off negative. But as the coupling grows the screening effect of the fermions takes over. The beta

5
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Figure 1: Two-loop beta function of theSU(3) gauge theory with varying numbersNf of
fundamental-representation flavors. The dashed vertical line atg2 = π2 ≃ 9.87 marks the crit-
ical valueg2

c of the coupling where, according to the gap equation, chiralsymmetry breaking
takes place in a walking theory.

function turns back and crosses the axis. The crossing pointg = g∗ defines an IRFP. WhenNf is
only slightly above the minimum needed to produce a negativeb2, the value ofg∗ is very large. But
it decreases monotonically with increasingNf .

As an analytic handle on chiral symmetry breaking we will use the gap equation. It predicts
that in a walking theory, chiral symmetry breaking sets in when the coupling reaches the critical
value [6]

g2
c =

4π2

3C2
= π2 , (3.2)

where the last equality is valid for the fundamental representation ofSU(3). Note thatgc does not
depend on the number of flavors.

We are now ready to determine the “phase diagram.” First assume thatNf is small enough that
either there is no two-loop IRFP, or, if it exist, thatg∗(Nf ) > gc. As we go down in energy scales,
the couplingg will grow, and chiral symmetry breaking (ultimately accompanied by confinement)
will set in wheng reachesgc. If, on the other hand,Nf is large enough thatg∗(Nf ) < gc, the running
will come to a halt at the IRFPg∗. The renormalized coupling will never reachgc, and the infrared
physics will be conformal.

Our crude dynamical model predicts that the conformal window occupies the rangeN∗
f ≤Nf ≤

(11/2)Nc, where the sill of the conformal window,N∗
f , is the solution ofg∗(N∗

f ) = gc. (In general
N∗

f is not an integer. The model suggests thatN∗
f is close to 12 forNc = 3, but whether this is

indeed the case is still under investigation.) Moreover, the dynamical model reveals an interesting
feature of the chirally broken phase. As can be seen from Fig. 1, whenNf < N∗

f andN∗
f −Nf is

not too large, the (negative) beta function at the critical coupling,β (g2
c), is roughly proportional to

6
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Nf −N∗
f . This is the hint that will lead us to the desired power counting.

4. Power counting

According to the model of the previous section, the beta function at the chiral symmetry break-
ing scale isβ (g2

c). This is a measure of the explicit breaking of dilatation symmetry felt by the
low-energy sector. AsNf is increased towards the sill of the conformal window, we expect this
explicit breaking to vanish; forNf > N∗

F , the infrared theory has an emergent conformal symmetry.
Loosely speaking, what this means is that the small parameter controlling the explicit breaking

of dilatation symmetry in the low-energy theory isNf −N∗
f . But there is an obvious problem.Nf

takes integer values, and, unlike the fermion mass, we cannot tuneNf −N∗
f continuously, nor can

we actually reach the critical pointNf = N∗
f sinceN∗

f is not an integer.
This problem can be solved for fermions in the fundamental representationby taking a suitable

large-N limit, the Veneziano limit. We assume that the number of flavorsNf grows in proportion
with the number of colorsNc, while the ratio

nf = Nf /Nc , (4.1)

is held fixed. Based on the behavior of the two-loop beta function, we expect that the limit

n∗f = lim
Nc→∞

N∗
f (Nc)

Nc
, (4.2)

will be finite, where nowN∗
f (Nc) is an integer: the actual smallest number of flavors where the

SU(Nc) theory is infrared conformal. The small parameter we seek for our powercounting isnf −
n∗f . In the Veneziano limit,nf has effectively become a continuous parameter, and the Veneziano-
limit sill of the conformal window can be reached by lettingnf → n∗f from below. Of course, we
must not forget that the increments we can make innf cannot be parametrically smaller than 1/Nc.
The complete power counting we need is thus given by (withN ≡ Nc)

p2/Λ2 ∼ m/Λ ∼ 1/N ∼ |nf −n∗f | ∼ δ . (4.3)

For any large-N limit, the appropriate coupling is the ’t Hooft coupling, which we take to be
α̃ = g2Nc/(16π2). Notice thatβ (g2)/(4g2) = β (α̃)/(4α̃). Our centralhypothesisis that at the
dynamical scaleΛ where chiral symmetry breaks spontaneously, the beta function behaveslike

β (α̃(Λ)) = O(nf −n∗f )+O(1/N) . (4.4)

As a consequence,β (α̃(Λ)) vanishes when the Veneziano limit followed by the limitnf ր n∗f are
taken.

We need to spend a moment to explain whatΛ is. Let us reexamine Eqs. (2.17) and (2.18).
If we disregard the potentialsVπ andVτ (the justification for doing this will be explained shortly),
the pion decay constant in the chiral limit iŝfπ = ev0 fπ , wherev0 is the expectation value of the
dilatonic meson field in the chiral limit. Similarly, the decay constant of the dilatonic meson itself is
f̂τ = ev0 fτ . Much like f̂π , the decay constant of the dilatonic meson is defined by the matrix element
of the dilatation current between the vacuum and a one dilatonic-meson state.Alternatively, it

7
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can be defined from the matrix element of the energy-momentum tensor between the same states.
Taking into account the behavior of these matrix elements in the Veneziano limit, welet

Λ ∼ 4π f̂π√
N

∼ 4π f̂τ

N
. (4.5)

Being O(1) in large-N counting,Λ is the characteristic scale for the masses of the lightestnon-
Goldstonemesons, which, in turn, provides the ultraviolet cutoff of the chiral lagrangian.

How does the power counting (4.3) constrain the potentials? Let us differentiate the lagrangian
of the microscopic theory, Eq. (2.13), with respect to the dilaton sourceσ(x), and then set the
sources to zero. We obtain

∂
∂σ(x)

L
MIC

∣

∣

∣

∣

σ=χ=0
= Tan(x)

∣

∣

∣

∣

χ=0
=

β (α̃)

4α̃
F2(x) = O(δ ) , (4.6)

where the last equality follows from our central assumption (4.4). More generally, if we differenti-
ate the partition functionZMIC with respect to theσ field n times, and we are careful to do this at
non-coinciding points, the resulting correlation function will be parametricallyof orderδ n.

On the effective field theory side, takingn derivatives of the lagrangian with respect toσ
probes then-th derivative of the potentials,V(n). In terms of the Taylor expansion

V =
∞

∑
n=0

cn

n!
(τ −σ)n , (4.7)

this probesck for k≥ n. The idea is to match suitable correlation functions of the microscopic and
the effective theory, settingσ = 0 (and, if desired,χ = 0 as well) in the end. It takes a detailed
study to verify that one can constrain all the expansion coefficients of thepotentials this way [9].
The end result is that the Taylor coefficients are subject to the power-counting hierarchy

cn = O(δ n) . (4.8)

The alert reader will have noticed that we must allow for multipleσ derivatives at the same space-
time point in the effective theory, but we disallow them in the microscopic theory. In fact, this is
not a problem, because the effective theory deals with hadrons, which are not point-like objects;
the effective theory cannot resolve spacetime distances smaller than 1/Λ.

We use this opportunity to draw the attention of the reader to a subtle point concerning the
power-counting proof of Ref. [9]. While we expect the hierarchy (4.8) to hold for generic (small)
values of all of the expansion parameters (4.3), the proof we have given in Ref. [9] effectively
invokes the Veneziano limit, in that it neglects all the 1/N corrections in Eq. (4.4). Some other
places in Ref. [9] also tacitly neglect 1/N corrections, notably Sec. 4.4, where we discuss the
tree-level theory in the limitnf ր n∗f .

The final result is that the leading-order lagrangian now consists of termsof orderδ according
to the power counting (4.3), with the expansion coefficients of the potentials subject to Eq. (4.8).
This allows us to discardVπ , Vτ andVM, becauseL̃π , L̃τ andL̃M are alreadyO(δ ) without them.
Only in Vd do we need to go to the first non-trivial order in its expansion. After settingσ = 0 and
χ = m, the leading order lagrangian reads

L = Lπ +Lτ +Lm+Ld , (4.9)

8
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where

Lπ =
f 2
π
4

e2τ tr(∂µΣ†∂µΣ) , (4.10)

Lτ =
f 2
τ
2

e2τ(∂µτ)2 , (4.11)

Lm = − f 2
π Bπ

2
eyτ mtr(Σ+Σ†) , (4.12)

Ld = f 2
τ Bτ e4τ(c0 +c1τ) . (4.13)

It remains to discuss the exponenty in Eq. (4.12). Assuming that the transition into the conformal
window is sufficiently smooth forγm, one can show that we needγm = γ∗m in the transformation rule
of the renormalized chiral source, Eq. (2.12), whereγ∗m is the IRFP value of the mass anomalous
dimension at the sill of the conformal window. As a result,

y = 3− γ∗m . (4.14)

Present day numerical evidence suggests that 0≤ γ∗m<∼1, and, therefore, 2<∼y≤ 3.

5. Tree level

In this section we consider the leading-order lagrangian for a given theory with fixed Nc and
Nf . We first discuss the classical vacuum of the dilatonic meson in the chiral limit. As follows from
Eq. (4.13), form= 0 the dilatonic meson’s potential isU(τ) = e4τ(c0 +c1τ) up to a dimensionful
constant. This potential is bounded from below provided thatc1 > 0. The unique, global minimum
of U(τ) is

v0 = −1/4−c0/c1 . (5.1)

[Like all LECs, the actual value ofc1 must be determined by matching the effective theory to the
microscopic theory. Note that only products such asc0Bτ or c1Bτ have an invariant meaning, much
like mBπ in the case of the standard chiral lagrangian. We use this freedom to assume Bτ > 0.
Self-consistency of the low-energy description then excludes a negative value forc1.]

Observe that the classical vacuum would become ill-defined forc1 = 0. This has the following
interesting interpretation. The potentialsV(τ −σ) introduced in Sec. 2 originate from the explicit
breaking of scale invariance in the massless microscopic theory. This is true, in particular, forc1,
which is theonlyLEC in the leading-order lagrangian coming from the expansion of the potentials
(note that the lagrangian (4.9) becomes scale invariant if we setm= c1 = 0). Thus, the stable clas-
sical vacuum of the effective theory ultimately owes its existence to the running of the coupling in
the microscopic theory. This should not come as a surprise, because, if the vacuum has a preferred
scale (as opposed to a vacuum with no characteristic scale, or a continuous manifold of vacua with
a gradually changing characteristic scale), then the theory cannot haveexact scale invariance.

The tree-level mass of the dilatonic meson in the chiral limit is

m2
τ = 4c1e2v0Bτ . (5.2)

If we consider the ratio of the dilatonic meson’s mass and decay constantf̂τ = ev0 fτ , we get

N2m2
τ/ f̂ 2

τ = 4c1N2Bτ/ f 2
τ , (5.3)

9
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in which the dependence onv0 cancels out. [The role of the factor ofN2 on both sides is to undo
the large-N dependence of the decay constant of the dilatonic meson, thereby keeping the ratio
finite in the Veneziano limit (compare Eq. (4.5)).] Recall thatc1 = O(δ ) according to Eq. (4.8). It
follows thatmτ ∼ δ 1/2. This resembles the familiar behavior of the pion mass in ordinary chiral
perturbation theory,mπ ∼ m1/2.

We next consider the classical vacuumv(m) for m> 0. It is implicitly given by

f 2
π BπNf ym

f 2
τ Bτc1

= 4v1(m)e(4−y)v(m) , (5.4)

wherev1(m) = v(m)−v0. Generically,v1(m) is O(1), becausec1 ∼ m∼ δ by the power counting.
One can check thatv1(m) > 0 for m > 0, and thatv(m) is a monotonically increasing function.
Using Eq. (4.14), the tree-level masses of the dilatonic meson and the pion are

m2
τ = 4c1Bτe2v(m)(1+(1+ γ∗m)v1(m)) , (5.5)

m2
π = 2mBπe(1−γ∗m)v(m) =

8c1 f 2
τ Bτ

y f2
π Nf

e2v(m)v1(m) . (5.6)

Both mτ andmπ are monotonically increasing withm. Interestingly, the dependence of the tree-
level pion mass on the fermion massmwould reduce to that of ordinary chiral perturbation theory,
if γ∗m happened to be equal to 1, which is the favored value according to the gap-equation analysis.
For any other value ofγ∗m, Eq. (5.6) furnishes us with a prediction of the low-energy theory that
distinguishes it from ordinary chiral perturbation theory.

6. Approaching the sill of the conformal window

In this section we study the tree-level predictions of the effective theory as the sill of the
conformal window is approached. To avoid technical complications, we willconsider only the
chiral limit, m = 0. Also, as was done in Ref. [9], we will take the Veneziano limit, thereby
neglecting the 1/N corrections in Eq. (4.4).

In the Taylor series for the potentials (4.7), each coefficientcn can in itself be expanded as a
power series innf −n∗f ,

cn =
∞

∑
k=n

c̃nk(nf −n∗f )
k . (6.1)

The lower limit of the summation comes from the power-counting hierarchy (4.8)(remember that
nf −n∗f ∼ δ ). In particular, the tree-level potential in Eq. (4.13) becomes

Vd(τ) = c0 +c1τ = c̃00+(nf −n∗f )(c̃01+ c̃11τ) . (6.2)

Sincenf < n∗f for chirally broken theories, the constraintc1 > 0 translates into ˜c11 < 0.

We may ask what happens if we attempt to apply the low-energy expansion to atheory that
lives inside the conformal window. Assumingnf > n∗f , we see thatc1 = (nf − n∗f )c̃11 becomes
negative. A a result, the classical potential becomes unbounded from below. The conclusion is that
the effective theory breaks down inside the conformal window. This is asit should be, because

10
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there is no spontaneous breaking of chiral symmetry inside the conformal window. In this sense,
the limit nf ր n∗f is qualitatively different, and more singular, than the chiral limitm→ 0.

Let us next examine the dependence of a few observables onnf −n∗f . Since we will be com-
paring observables belonging to different theories, we must compare dimensionless quantities. The
dependence onnf − n∗f may come directly fromc1 = (nf − n∗f )c̃11, or it can also arise from the
behavior of the classical vacuumv0. In fact, we already have one such example, namely, the ratio
Nmτ/ f̂τ in the chiral limit, given in Eq. (5.3). In this case there is no dependence onv0, and the
dependence onnf −n∗f comes only fromc1.

Before moving on, it is convenient to use the freedom to shift theτ field by a constant,τ →
τ + ∆, in order to simplify the expression forv0. Given thatnf −n∗f is one of the small expansion
parameters, we take∆ to be independent ofnf − n∗f so as not to obscure the power counting.
Substituting in Eq. (6.2) we see that the shift has the effect of changing ˜c01 → c̃01+ c̃11∆, while
c̃00 andc̃11 are unchanged. We will use this freedom to set ˜c01 = 0. (The remaining dependence of
the lagrangian (4.9) on the shift∆ is absorbed into redefinitions of thef ’s andB’s.) The classical
vacuum of them= 0 theory thus becomes (compare Eq. (5.1))

v0 = −1/4− c̃00/(c̃11(nf −n∗f )) . (6.3)

We comment in passing that the dependence of the physical decay constants, f̂π = ev0 fπ and f̂τ =

ev0 fτ , on v0 suggests that we should havev0 → −∞ for nf ր n∗f , which in turn requires ˜c00 > 0.
Appealing as this may be, however, we have not been able to prove this assertion, basically because
it involves the comparison of dimensionful quantities of different theories.

As our second example we consider the fermion condensate, measured in units of f̂π . We find

〈ψψ〉
f̂ 3
π

= −BπNf

fπ
e−γ∗mv0 , (6.4)

wherev0 is now given by Eq. (6.3), and where we have used that the tree-level condensate is

〈ψψ〉 = − f 2
π BπNf eyv0 . (6.5)

Assuming that ˜c00 > 0 (and thatγ∗m > 0 as well), Eq. (6.4) predicts an enhancement of the fermion
condensate fornf ր n∗f , which, apart from the familiar dependence on the mass anomalous dimen-
sion, depends also on the LECs ˜c00 andc̃11 through Eq. (6.3).

The low-energy effective theory provides us with a quantitative description of the (pseudo)
Nambu-Goldstone sector in the chirally broken phase. But it does not give us any access to physics
inside the conformal window, nor to the dynamics of a chirally broken theoryat any energy scale
which is comparable to or larger thanΛ. We may gain some qualitative understanding of the
transition into the conformal window by using the dynamical model of Sec. 3. This consists of
using the two-loop beta function, combined with the prediction of the gap equation for the critical
coupling that triggers chiral symmetry breaking. Here we add a new element,namely, we will use
this dynamical model in the Veneziano limit, where, in terms of the ’t Hooft coupling introduced
in Sec. 4, the critical coupling is̃α = 1/6 (for fermions in the fundamental representation).

In the Veneziano limit, one can express the two-loop beta function as

β (α̃) = −
(

1
6
− α̂

)2(

α̂ +
n̂
3

(

25
6
−13α̂

))

, (6.6)
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where we wroteα̃ = 1/6− α̂ = α̃c− α̂ andnf = 4− n̂. At the chiral symmetry breaking scale
α̃(Λ) = α̃c, which corresponds tôα = 0. The beta function then satisfiesβ (α̃c) ∝ n̂. It follows that
the sill of the conformal window is atn∗f = 4, and that the conformal window is 4< nf < 11/2.
(Fornf > 11/2 asymptotic freedom is lost.)

We next introduce a new reference scale denotedΛnc, where the subscript “nc” stands for
“nearly-conformal.” It is defined in the massless theory by the condition that

β (α̃(Λnc)) = −ε0 , (6.7)

for some fiducial value 0< ε0 ≪ 1. Eq. (6.7) is supplemented by the additional instruction thatΛnc

is to be found by starting in the deep infrared, and then increasing the scaletill Eq. (6.7) is satisfied.
[This additional instruction is needed to avoid the second occurrence ofβ (α̃) =−ε0 in the vicinity
of the gaussian fixed point, as is visible, for example, in theNf = 12 orNf = 13 curves in Fig. 1.]

Because it relies on the beta function, the criterion (6.7) make sense only if itssolutionΛnc is
large compared to any dynamical infrared scale that may be induced in the massless theory. The
scaleΛnc thus always exists for theories inside the conformal window, where no dynamical infrared
scale is generated. In the chirally broken phase, our dynamical model predicts thatΛnc exists
provided thatnf is close enough ton∗f , so that at the critical coupling,|β (α̃c)| < ε0. Moreover,
becauseβ (α̃c) tends to zero whennf tends ton∗f , it follows that the ratioΛ/Λnc also tends to zero
in this limit.

Let us now distinguish three regions for the fermion mass:

I : Λ ≪ m≪ Λnc , II : m∼ Λ , III : m≪ Λ .

Region III is where the low-energy expansion is valid. The theory has both approximate chiral
symmetry and approximate dilatation symmetry, both of which are spontaneously broken.

In Region I, chiral symmetry and dilatation symmetry are both explicitly broken bythe fermion
mass, but this breaking is soft. Because of the smallness of the beta function, what we expect to
see in Region I is the characteristic behavior of amass-perturbed conformal system. This implies
that the masses of all mesons behave like (seee.g.Ref. [12])

M ∼ Λ(m/Λ)
1

1+γ∗m . (6.8)

The transition between the conformal and chirally broken behavior occurs in Region II. Once
mgoes belowΛ, we enter the chiral regime. The masses of all non-Goldstone mesons freeze out at
Mnon-NGB ∼ Λ, while the masses of the pseudo Nambu-Goldstone mesons behave like

M2
pNGB =

[

O(nf −n∗f )+O(m/Λ)
]

Λ2 ≪ Λ2 ∼ M2
non-NGB . (6.9)

We see that asnf tends ton∗f from below, the masses ofall mesons in the massless theory tend to
zero, if measured in units ofΛnc. But the masses of the pseudo Nambu-Goldstone mesons vanish
faster; the smallness of the ratioMpNGB/Mnon-NGB is what allows for the existence of a systematic
low-energy description.

Notice that in order to stay in the chiral regime whennf gets closer ton∗f we must keep de-
creasingm. This is because we must maintainm/Λ ≪ 1, andΛ/Λnc vanishes at the conformal sill.
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It is also useful to consider what happens if we holdmfixed in units ofΛnc. Regardless of whether
nf is smaller or larger thann∗f , all theories where|nf −n∗f | ≪ 1 then have a wide region where the
theory exhibits the typical behavior of a mass-perturbed conformal system. The difference between
nf > n∗f andnf < n∗f is that in the former case, the mass-perturbed conformal behavior exists for
anym≪ Λnc, regardless of how smallm is. By contrast, fornf < n∗f this behavior exists only in
Region I:Λ ≪ m≪ Λnc, which is bounded from below. Asnf approaches the silln∗f , the range of
fermion mass where the theory exhibits a mass-perturbed conformal behavior keeps expanding be-
causeΛ/Λnc gets smaller, until eventually atnf = n∗f we haveΛ/Λnc → 0, and the chirally broken
behavior is completely lost. The physical picture that emerges is that, if we always useΛnc as the
reference scale, and the fermion mass is kept at some fixed value in units ofΛnc, then the physical
spectrum will vary continuously as we dialnf upwards, acrossn∗f and into the conformal window.
In this sense, the transition into the conformal window is smooth.
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