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1. Introduction

One of the great challenges of hadron physics is to build consistent pictures of the internal
structures of strongly-interacting particles. An important aspect of this endeavour is the calculation
of electromagnetic form factors, which describe the distribution of electromagnetic currents in
hadrons.

Recoil polarisation experiments at Jefferson Lab show that the ratio of the electric and mag-
netic form factors in the nucleon, 1,Ggp,/Gup, decreases approximately linearly for 0% > 0.5 GeV?
(seee.g. [1, 2, 3, 4]). Experimental results at high-momentum scales are not yet precise enough to
determine whether this trend continues and there is a zero crossing. Resolving the scaling of the
form factors in this domain is one of the key physics goals of the upgraded CEBAF at Jefferson
Lab.

The large-Q? behaviour of the pion electromagnetic form factor Fy is also challenging to inves-
tigate experimentally (see [5, 6, 7] for recent innovative advances). This information is important
for understanding the transition from the soft to the hard regime in QCD (see [8] for a recent
example). At present, the experimental data is not able to reliably discriminate different models
describing the transition to the asymptotic domain [9].

Lattice calculations of hadronic form factors have typically focussed on the study of processes
at low-momentum transfer (see e.g. [10, 11, 12, 13, 14, 15]), with only limited studies at large
0? >3 GeV?2 [16, 17]. These calculations are difficult because the signals fall with 0?2, and the
signal-to-noise ratio deteriorates. This also makes it difficult to evaluate the degree of excited-state
contamination [16, 18, 14, 19, 20].

In this work we demonstrate how high-momentum transfer in hadron form factors may be ac-
cessed on the lattice using an extension of the Feynman—Hellmann theorem to non-forward matrix
elements. This builds upon the techniques developed for forward matrix elements [21, 22, 23, 24]
(see also [25, 26, 27, 28, 29, 30, 31, 32] for similar related techniques). These methods allow
one to access matrix elements from 2-point correlators, rather than a more complicated analysis
of 3-point functions, which simplifies the elimination of excited-state contamination. The calcu-
lations are performed with Breit frame kinematics (E(p') = E(p)) and hence one maximises the
momentum transfer for any given state momentum, reducing the noise in the correlation function.

2. Feynman-Hellmann Methods

The Feynman—Hellmann method for the calculation of forward matrix elements is described
in [22]. Here we describe only the subtleties involved in extending the technique to non-forward
matrix elements. Suppose the QCD Lagrangian is modified in a lattice simulation such that

L) = L)+ A (e“?'f’ +e*fﬁ) o), @.1)

where € is a quark-bilinear operator and A is a freely-varying real parameter. It may be shown that
the shift in the energy of a hadron state H (') resulting from a shift in A from A = 0 is proportional
to a matrix element of the operator &,
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where p = p' & 4. In order for this result to hold, p and p’ must satisfy the Breit frame condition
Ey(p) = En(P'). States not satisfying this requirement do not receive energy shifts at &' (1).

Following this procedure, we may calculate non-forward matrix elements for any particular
operator ¢ by performing hadron spectroscopy for multiple values of A # 0. Connected quark
contributions are calculated by inverting quark propagators according to the modified action cor-
responding to Eq. (2.1). Determining disconnected contributions requires the generation of new
gauge ensembles [24].

3. Simulation Details

In this work, we use an ensemble of 1700 gauge field configurations with 2+ 1 flavours of
non-perturbatively O(a)-improved Wilson fermions and a lattice volume of L> x T = 323 x 64.
The lattice spacing a = 0.074(2) fm is set using a number of singlet quantities [33, 34, 35, 36]. The
clover action used comprises the tree-level Symanzik improved gluon action together with a stout
smeared fermion action, modified for the implementation of the FH method [22]. The hopping
parameters (k;, Ky) = (0.120900,0.120900) correspond to a pion mass of ~ 470 MeV. To study
electromagnetic form factors, quark propagators are calculated with the modified Lagrangian

Z() = L)+ (7 +e7) g4 7q0), (3.0

for multiple values of g, where either A, or A4 take non-zero values of 1 x 10~% or —1 x 107>, Note
that we only use Breit-frame kinematics with 7' = —p. This choice allows us to minimise > for
each value of g%, and hence minimise the noise in the correlator. This choice of kinematics also
results in nucleon energy shifts that are directly proportional to Gg and Gy,.

4. Results

4.1 Electromagnetic Form Factors of the Nucleon

Individual quark flavour contributions to the Euclidean decompositon of the vector current
matrix element of the nucleon are written in terms of the Dirac and Pauli (F lq and qu) form factors,

_ _ q
(N(P',5')[2(0)1uq(0) [N(p,s)) = a(p',s") | vuF(Q%) + Guvﬁqu(Qz) u(p,s), (4.1
where we denote the invariant 4-momentum transfer squared as Q> = —¢*> = —(p’ — p)z. The Sachs
electromagnetic form factors are defined by
2
Gl =F— Qizeq, Gl =F!+F. (4.2)
(2M)
For Breit frame kinematics where p’ = —p, the energy shifts resulting from insertion of the tempo-
ral and spatial components of the current are proportional to the electric and magnetic form factors
respectively,
JdEy =5 My JdEy 7——p [€xq),
- =" 2G1 RE— = LGl . 4.3
Ay |, Ey F oA |, 2Ey M (4-3)
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Here & is the spin polarisation vector determined by the choice of polarisation direction of the
nucleon.

Fig. 1 shows results for the proton electric and magnetic form factors neglecting disconnected
contributions. In the low-Q? region we compare with results computed on the same ensembles us-
ing a variationally-improved 3-point function approach. Good agreement is observed in the region
of comparable Q®>. The Feynman—Hellmann approach is seen to extract a clean signal to much
higher momentum transfers than have previously been accessible. Fig. 2 displays the extraction
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Figure 1: Gg and Gy, for the proton from the Feynman—Hellmann method and from a variational analysis
of three-point functions on the same ensemble (as described in [20]).

of the ratio Gg /Gy as a function of Q? from the Feynman—Hellmann technique, a variational ap-
proach and experimental data. The overall trend is seen to compare very well with the experimental
data.

4.2 Electromagnetic Form Factor of the Pion

Individual quark flavour contributions to the pion form factor are defined by

PP,
an(Q) 4.4)

With the modified fermion action, pion energy shifts are given by

(m(p")]4(0)yuq(0) | =(p,s)) =

JE; 2 JEy 7
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Following a similar analysis as that for the nucleon, we show the determination of the pion form
factor in Fig. 2, along with a comparison to experimental data. The signal-to-noise ratio achieved
gives confidence that future lattice simulations will be able to provide important insight into the
transition between the perturbative and nonperturbative regimes.

5. Conclusion

In this work we have extended the Feynman—Hellmann technique to access non-forward matrix
elements. We demonstrate that application of the technique provides a dramatic improvement in
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Figure 2: On the left, the ratio Gg /Gy for the proton from application of the Feynman—Hellmann method,
from a variational analysis of three-point functions, and from experiment [37, 4, 3]. On the right, the scaled
pion form factor Q?F;, from the Feynman—Hellmann technique and from experiment [7]. The solid lines
are the vector meson dominance at the relevant pion masses, and the dotted lines are the asymptotic values
predicted by perturbative QCD (see [8] for a discussion of this value and its limitations).

the ability to extract nucleon and pion form factors at high momentum transfers. An additional
improvement that we intend to pursue is the use of improved operators that couple more strongly
to boosted hadron states, as proposed in [38].
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