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1. Introduction

It is well known that the lattice local axial vector current Aloc
µ = ψ(x)γµγ5ψ(x) does not satisfy

the continuum form of the axial Ward identity

∂µAµ(x) = 2mP(x), P(x) = ψ̄(x)γ5ψ(x) , (1.1)

which is due to lattice artefacts. In most cases, where Wilson like fermions are used, the corre-
sponding improved renormalized current

Aloc,MS
µ (x) = ZAloc(1+bAam)

[
Alatt,loc

µ +acA∂µPlatt
]

(1.2)

is taken to compute physical quantities, like the nucleon axial charge gA. It turned out, however,
that the resulting gA value are slightly below the experimental number and it requires a large effort
to bring the lattice result into coincidence with it [1, 2, 3, 4, 5]. An alternative possibility is to use
the point-split (ps) axial vector current

Aps
µ (x) =

1
2
[
ψ̄xγµγ5Uµ(x)ψx+aµ̂ + ψ̄x+aµ̂γµγ5U†

µ(x)ψx
]
, (1.3)

which is known to fulfill the corresponding lattice axial Ward identity [6]. In [7] we could show
that this identity is fulfilled both perturbatively (in one-loop) and nonperturbatively for the SLiNC
action [8]. In this work we present implications of this nonlocal lattice form of the axial current -
the renormalization and the computation of the axial charge gA.

2. Renormalization

It is known that the point-split lattice vector current V ps
µ (x) as obtained from the lattice vector

Ward identity is conserved. This leads to the renormalization factor Zps
V = 1 whereas the noncon-

served local counterpart differs by a finite number from that. One could speculate what behavior
Zps

A computed for (1.3) shows. On the one hand Aps
µ (x) is also a result of the lattice axial vector

Ward identity. On the other hand there appears an extra term which cannot be absorbed into a
redefinition of the current. This is due to the fact that Wilson like actions break chiral symmetry.
For the SLiNC action (where the fermionic part is a stout smeared version of a clover improved
Wilson action) this extra term is a combination of the standard Wilson term and the clover term.
We perform a nonperturbative calculation on a 323×64 lattice at β = 5.50 [a = 0.074(2) fm]. In
order to perform the chiral limit we use five κ values along the flavor symmetric line (κl = κs)
corresponding to pion masses Mπ = 470, 440, 400, 340, 290 MeV.

We use the nonperturbative RI′-MOM scheme [9] performing a linear chiral extrapolation for
each (ap)2 value. Afterwards we transform into the RGI and MS schemes which coincide due to
the lack of anomalous dimensions. The result is shown in Fig. 1. In the chosen momentum interval
ZA is fitted as a linear function in (ap)2. Variations of this interval determines the systematic error
which dominates the fit error. We find Zps

A = 1.0212(12)fit(47)sys which is very near to one. This
is consistent with one-loop perturbative results using, however, a different gauge action [7]. That
result would mean that practically quantities computed from this point-split axial vector current
alone do not need to be renormalized. It remains to check, however, that this behavior remains
valid for other β values (lattice spacings).
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Figure 1: ZRGI
A for β = 5.5 as function of (ap)2 for the point-split axial current A = Aps.

3. Nucleon axial charge gA

The axial charge gA is an important quantity to understand the spin structure of the nucleon,
but also plays a role in certain astrophysical processes. It can be measured in the β decay of the
neutron (n→ p+ e+νe) where it determines the angular distribution of the emitted electron. The
current experimental value is given in [10] as gA = 1.2723(23).

On the lattice gA is calculated from the forward matrix element of the axial vector current Aµ
q

〈p,s|Aµ

u−d|p,s〉= 2gA sµ , (3.1)

where |p,s〉 is a proton state with momentum p and spin sµ and the inserted operator is Aµ

u−d =

Aµ
u −Aµ

d . Being a nonsinglet quantity there are no contributions from disconnected quark lines.
The relation (3.1) makes this observable to a benchmark test for lattice calculations. For a review
of the current status see [5]. Despite the progress that has been made in the last years there remain a
couple of challenges to be solved. Among them we mention the extrapolation to the physical point
and the treatment of excited states.

In this work we take the point-split axial vector current (1.3) as the operator inserted in (3.1).
As lattices we use {323×64, β = 5.50 [a= 0.074(2) fm], Mπ = 470, 360, 310 MeV} along the m̄=

const. line and {483× 96, β = 5.80 [a = 0.059(3) fm], Mπ = 427 MeV} at the flavor symmetric
point. gA has to be estimated from the ratio of the 3-point function to the 2-point function

R(ti, t f ,τ) =
G3(ti, t f ,τ)

G2(ti, t f )
→ gA (3.2)

with (t f − ti) - the source-sink distance, τ - the source-operator insertion distance. It is clear that a
meaningful determination of gA is possible only if the ratio exhibits a pronounced plateau, ideally
independent on (t f − ti) and τ .

One of the main challenges of this kind of computations is the handling of excited states.
There are various techniques which are used to take them into account. Among them we have the
summation, the multi-exponential fit and the variational methods [11, 12, 13, 14].

It turns out that the source-sink distance determines the form and the height of the plateau
of the ratio R(ti, t f ,τ) defined in (3.2) (see Fig. 2). This is directly connected to the influence of

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
4
9

Partially conserved axial vector current and applications H. Perlt

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ̂ = τ + 1
2

(23− t)

1.075

1.100

1.125

1.150

1.175

1.200

1.225
g
A
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ḡA = 1.149(15), t = 19
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Figure 2: Plateaus of R(ti, t f ,τ) for various tsep = (t f − ti) as function of operator insertion time τ for
β = 5.80.

excited states which diminish the height for smaller separations. Investigations in [14] suggest that
the variational method shows very stable results.

In our computation, however, we used the 3-exponential fit method which includes the first
three energy levels (t = tsep). The fit to the ratio (3.2) has the form

FgA(t,τ) = gfit
A

[
1+C10

(
e−τM10 + e−(t−τ)M10

)
+C11e−tM10

+C20

(
e−τM20 + e−(t−τ)M20

)
+C22e−tM20

+C21
(
e−τM21e−tM10

)
+C21

(
e−tM20e−τM21

)]
×
[
1+D10e−tM10 +D20e−tM20

]−1
, (3.3)

where Mik = Mi−Mk and the Mi are the masses of the ground state (i = 0) and the next two excited
states (i = 1,2). They can be determined rather precisely from the corresponding 2-point functions,
as shown in Fig. 3. The fit (3.3) is performed for the parameters gfit

A ,C and D over the available data
sets (t,τ) simultaneously. An example is shown in the right of Fig. 3. where we fit over the whole
data set with all available separations tsep = 15...23.

Our final results for gA at β = 5.50 (Mπ = 470 MeV) and β = 5.80 are shown in Fig. 4. We
compare them for β = 5.50 with the variational method [14] which has been obtained for the local
axial curent on the same lattice. It is obvious that the plateau values depend very much on the
source-sink separations. The 3-exponential fit gives a higher value towards the experimental result.
It can be recognized that (using the same lattice parameters) the axial charge for the point-split
current is nearer to the experimental value than the value using the local current. This should be
seen also in connection to the corresponding Z factor (Zps

A = 1.0212) which indicates that we are
rather close to the continuum. Furthermore, we did not find a significant dependence on the three
pion masses at β = 5.50. For β = 5.80 the final fit gfit

A is even larger. This shows a tendency to
increase gA(β ) with increasing β (decreasing lattice spacing a) which is encouraging. However, for
a sound comparison with experiment it remains to perform a careful extrapolation to the physical
point.
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Figure 3: Left: Three mass fit to the 2-point correlation function for β = 5.80. Right: Result of the global
fit (3.3) for β = 5.80.
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Figure 4: gA values using different methods at the flavor symmetric points. β = 5.50 and Mπ =
470 MeV: gvar

A : local axial current (variational method), point-split axial current (plateau values at t =
tsep = 13,15,17,19,21) and 3-exponential fit gfit

A ; β = 5.80: point-split axial current (plateau values at
t = tsep = 15,17,19,21,23) and 3-exponential fit gfit

A . The experimental value is denoted as gexp
A .
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