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In recent years, exotic hadrons called X, Y, Z which cannot be explained by the quark model
have been found one after another. The tetra–quark state, which is one of the typical scenarios
to interpret the exotic state, is based on the existence of a diquark state. The discovery of a
pentaquark state at CERN in 2015 also makes a diquark state even more important. Therefore,
it is considered that a diquark state plays an important role in many kinds of QCD physics. We
discuss existence of such diquarks from the viewpoint of a first principle calculation.
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1. Introduction

In this paper, evidence of diquark state [1] in view of a lattice QCD simulation is discussed.
The most naive question for all people is why a diquark is important. There may be many answers
to this question. For example, diquark picture is a hopeful candidate to explain exotic hadrons
such as tetra-quark and penta-quark which cannot be explained naturally by quark model. In 2015,
penta-quark was observed by LHC experiment at CERN [2]. This discovery makes diquark states
even more important. Diquarks are also considered as the central ingredient of cold, dense matter
where they condense to form a color superconductor. Analyses of finite density QCD have been
developed not only phenomenologically but also quantitatively and we guess that new physically
interesting things exist in this field. Taking this situation into consideration, we study if diquark
states are for real using lattice QCD simulation.

Table 1: Classification of diquarks

JP Color Flavor Operator

0+ 3̄ 3̄ qTCγ5q, qTCγ4γ5q
1+ 3̄ 6 qTCγ⃗q, qTCσi4q
0− 3̄ 6 qTCq, qTCγ4q
1− 3̄ 3̄ qTCγ⃗γ5q, qTCσi jq

Jaffe [3] proposed to divide diquarks into four classes as shown in Table1, and to predict
their properties using perturbation theory. Quantum properties of the diquarks are determined by
combination of gamma matrices in diquark operator. In Table1, q and C are the quark field and the
charge conjugation operator, respectively. The most important point for this classification is that the
spin color effective interaction by one gluon exchange predicts a most stable diquark state called a
good diquark. This good diquark corresponds to the color anti–triplet, flavor anti–symmetric and
spin singlet positive parity channel. This phenomenological analysis implies that the mass of the
good diquark is the lightest of all diquark states and the diquark correlation is enhanced in this good
diquark channel. Therefore, we should check if this perturbative statement remains correct using
lattice QCD simulation.

For this objective, we calculate diquark mass diferences between the good diquark and other
diquarks and also analyze the density distribution of diquarks in 3–dimensional space through
calculations of the density-density correlators.

2. Frame work

2.1 Diquark states on a lattice

Because a diquark state is a colored object, we need to consider how to deal with this state on
a lattice. We have two possible choices. One is to introduce a gauge fixing method on the lattice.
The other is to use some gauge invariant formulation. In our work, we adopt a gauge invariant
strategy to respect the gauge invariant formalism of the lattice. To be more specific, we combine
a diquark and a static quark into a color singlet. Namely, we consider a static–light–light baryon.
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This corresponds to look at a diquark in the background field of a static quark. Therefore, the
relevant limit is to keep the static quark far from the light quarks. In this approach, a static–light–
light baryon operator OΓ(x) is given in the following expression with Γ = 1,γµ ,γ5,γ5γµ ,σµν for
two light flavor quarks u and d.

OΓ(x) = εabc

[
uT

a (x)CΓdb(x)±dT
a (x)Γub(x)

]
sc(x), (2.1)

where the +(−) sign corresponds to the flavor symmetric (anti–symmetric) combination and sc

denotes the static quark.

2.2 Diquark mass difference

Using a static–light–light baryon, we can easily calculate the mass difference between di-
quarks. What we should do is to calculate the static-light-light baryon correlator CΓ(t) defined as
follows in standard manner for usual hadron spectroscopy.

CΓ(t) = ∑⃗
x

⟨
OΓ(⃗x, t)O

†
Γ(⃗0,0)

⟩
(2.2)

In addition to a light quark propagator, a static quark propagator D−1
Q (x|y) from y to x is also needed

to calculate this static-light-light baryon correlator. The static quark propagator can be analytically
calculated in the following way for x4 > y4 with the static quark mass mQ.

D−1
Q (x|y) = δ (⃗x− y⃗)

(
1+ γ4

2

)[
x4−1

∏
k=y4

U4(⃗x,k)

]†

e−mQ(x4−y4) (2.3)

The static–light–light baryon correlator decreases exponentially and this behavior is managed by
the sum of the diquark mass and the static quark mass at large t as follows.

CΓ(t) ∝ e−
[

M(diquark)+M(static quark)
]

t (at large t) (2.4)

Consequently, we can extract the sum of the diquark mass and the static quark mass from this
correlator for all diquark states. Then, we can calculate mass differences between two diquark
states. While mQ itself is UV–divergent, and not physically meaningful, the mass differences be-
tween static–static–baryons in different channels are UV–finite. In an actual numerical simulation,
the factor e−mQ(x4−y4) can be dropped because this contribution is canceled in the calculation of
diquark mass differences.

2.3 Density–density correlator

We consider the density-density correlator Cdd
Γ (x⃗1, x⃗2, t) defined as follows with a density op-

erator ρ(x) [4].
Cdd

Γ (r⃗1, r⃗2, t) =
⟨

OΓ(⃗0,2t)ρ(r⃗1, t)ρ(r⃗2, t)O
†
Γ(⃗0,0)

⟩
(2.5)

ρ (⃗r, t) = q̄(⃗r, t)γ4ρ (⃗r, t) (2.6)

We put a creation operator O†
Γ for a static-light-light baryon at t = 0, and an annihilation operator

OΓ at 2t. In the middle of this time separation, we put two density operators and analyze the space

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
2
1

Searching for evidence of diquark states using lattice QCD simulations Ryutaro Fukuda

distribution. In this calculation, we fix the distance r from the static quark Q to the two light quarks
r = |r⃗1| = |r⃗2|. Therefore, this calculation method provides us with density-density correlators as
a function of θ which is the angle between the two light quarks as shown in Fig.1. If the density-
density correlator is enhanced when two light quarks approach each other, this can be interpreted
as diquark attraction. On the other hand, if density-density correlator has no dependence on θ , two
light quarks have no specific interaction.Calculation of density-density correlator

In the middle of  t-direction, we calculate density-density 
correlators as a  function of cosθ in the spherical shell.

Q

⇢(~r1)

⇢(~r2)
✓

If the density-density correlator is enhanced when two light quarks 
approach each other, this can be interpreted as diquark attraction.

Figure 1: Density–density correlator

3. Numerical results

3.1 Lattice design

We use O(a)–improved 2–flavor Wilson fermions and standard Wilson gauge action. Thanks
to CLS ensemble, we adopt a 323 ×64 lattice with the ensemble A4 in Ref.[5] and the pion mass
is 380 MeV in this setup.

Numerical setup 
・O(a)-improved 2-flavor Wilson fermions  
・Wilson gauge action

323 ⇥ 64 m⇡ = 380 MeV

(configurations: CLS ensemble)
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light quark propagator: source and sink smeared with HYP smeared gauge links

static quark propagator: calculated with HYP smeared gauge links
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Figure 2: Calculation of effective mass difference and density–density correlator

For the calculation of diquark mass differences and density-density correlators, light quark
propagators D−1

q and static quark propagators D−1
Q are needed as shown in Fig.2. For light quark
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propagators, source and sink Jacobi smearing with HYP smeared gauge links are used. Static quark
propagators are also calculated with HYP smeared gauge links.

3.2 Diquark mass difference

Green:
Blue:
Red:

Magenta:
Cyan:
Brown:

             

Figure 3: Effective mass difference between the good diquark and other diquarks

Figure 3 shows the effective mass differences between the good diquark and other diquarks.
From this figure, we can say that the good diquark, the positive parity scalar, is the lightest of all
diquark states as expected. The positive parity vector diquarks are degenerate and have clearly
higher energy than the good diquark. Moreover, the negative parity scalars and vectors have much
larger energy than the positive parity states. These statements are consistent with the prediction by
the phenomenological analysis based on one gluon exchange.

3.3 Space distribution of density–density correlator

Figure 4 shows the space distribution of the density–density correlator for all diquark channels.
Because a cubic lattice generally breaks rotational symmetry and distorts the uniform spherical
distribution, we normalize the space distributions of the density–density correlator by the uniform
lattice distribution to effectively remove this lattice artifact. Note that the horizontal axis is the
value of cosθ , where θ denotes the angle between two light quarks (see Fig.1). We can clearly
observe that the good diquark shows enhanced correlation when the two light quarks are close
to each other. In contrast to the good diquark, no clear signal of interaction is observed in other
diquark channels.

4. Conclusion

Using lattice QCD simulations, we can clearly observe that a good diquark is the lightest
among all possible diquark states. In addition, we can also state that attraction between two light
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density-density correlation

cos ✓

clear attraction in a good diquark          

        Red: good diquark 
    Green: parity even vector 
       Blue: parity odd scalar 
Magenta: parity odd vector 

Preliminary

q-q far from each other q-q close to each other

                 

Figure 4: Space distribution of density–density correlator (r = |r⃗1|= |r⃗2|= 3a)

quarks is observed in a good diquark. This statement is consistent with the prediction obtained by
phenomenological calculation and the former study based on a lattice QCD simulation for heavier
quarks than this study [6]. Therefore we can conclude that lattice QCD simulations support the
possibility of existence of diquark states.
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