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We present results for the isospin-0 ππ s-wave scattering length calculated in twisted mass lattice
QCD. We use three N f = 2 ensembles with unitary pion mass at its physical value, 240 MeV
and 330 MeV respectively. We also use a large set of N f = 2+1+1 ensembles with unitary pion
masses varying in the range of 230 MeV - 510 MeV at three different values of the lattice spacing.
A mixed action approach with the Osterwalder-Seiler action in the valence sector is adopted to
circumvent the complications arising from isospin symmetry breaking of the twisted mass quark
action. Due to the relatively large lattice artefacts in the N f = 2+ 1+ 1 ensembles, we do not
present the scattering lengths for these ensembles. Instead, taking the advantage of the many dif-
ferent pion masses of these ensembles, we qualitatively discuss the pion mass dependence of the
scattering properties of this channel based on the results from the N f = 2+1+1 ensembles. The
scattering length is computed for the N f = 2 ensembles and the chiral extrapolation is performed.
At the physical pion mass, our result Mπ aI=0

0 = 0.198(9)(6) agrees reasonably well with various
experimental measurements and theoretical predictions.
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1. Introduction

Elastic ππ scattering is a fundamental QCD process at low energies. It provides an ideal
testing ground for the mechanism of chiral symmetry breaking. The isospin-0 ππ scattering is
particularly interesting because it accommodates the lowest resonance in QCD – the mysterious
σ or f0(500) scalar meson. Studying this channel in lattice QCD is difficult mainly due to the
fermionic disconnected diagrams contributing to the isospin-0 ππ correlation function. To date
there are only two full lattice QCD computations dedicated to this channel [1, 2]. In this work
we compute the scattering length of the isospin-0 ππ channel in twisted mass lattice QCD [3].
We use a mixed action approach with the Osterwalder-Seiler (OS) action [4] in the valence sector
to circumvent the complications arising from the isospin symmetry breaking of the twisted mass
quark action.

2. Lattice setup

The results presented in this paper are based on the gauge configurations generated by the
European Twisted Mass Collaboration (ETMC). We use three N f = 2 ensembles with Wilson clover
twisted mass quark action at maximal twist [3]. The pion masses of the three ensembles are at the
physical value, 240 MeV and 330 MeV, respectively. The lattice spacing is a = 0.0931(2) fm for
all three ensembles. More details about these emsembles are presented in Ref. [5]. In addition,
we use a set of N f = 2+1+1 ensembles with Wilson twisted mass quark action with pion masses
varying in the range of 230 MeV - 510 MeV at three different values of the lattice spacing [6, 7].
We follow the notation in these references and denote the ensembles as A, B, and D ensembles with
lattice spacing values aA = 0.0863(4) fm, aB = 0.0779(4) fm and aD = 0.0607(2) fm, respectively.

In Table 1 we list all ensembles used in this study with the relevant input parameters, the lattice
volume and the number of configurations.

In the valence sector we introduce quarks in the so-called Osterwalder-Seiler (OS) discretisa-
tion [4]. The OS up and down quarks have explicit SU(2) isospin symmetry if the proper param-
eters of the actions are chosen. The matching of OS to unitary actions is performed by matching
the quark mass values. Masses computed with OS valence quarks differ from those computed
with twisted mass valence quarks by lattice artefact of O(a2), in particular (MOS

π )2− (Mπ)
2 =

O(a2). For twisted clover fermions this difference is much reduced as compared to twisted mass
fermions [5], however, the effect is still sizable. We use the OS pion mass in this paper, with the
consequence that the pion mass values of all ensembles are higher than the values measured in the
unitary theory.

As a smearing scheme we use the stochastic Laplacian Heavyside (sLapH) method [8, 9] for
our computation. The details of the sLapH parameter choices for the N f = 2+1+1 Wilson twisted
mass ensembles are given in Ref. [10]. The parameters for the N f = 2 ensembles are the same as
those for N f = 2+1+1 ensembles with the corresponding lattice volume.

3. Lüscher’s finite volume method

Lüscher showed that the infinite volume scattering parameters can be related to the discrete
spectrum of the eigenstates in a finite-volume box [11, 12]. In the case of s-wave elastic scattering,
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ensemble β csw aµ` aµσ aµδ (L/a)3×T/a Nconf

cA2.09.48 2.10 1.57551 0.009 - - 483×96 615
cA2.30.48 2.10 1.57551 0.030 - - 483×96 352
cA2.60.32 2.10 1.57551 0.060 - - 323×64 337
A30.32 1.90 - 0.0030 0.150 0.190 323×64 274
A40.24 1.90 - 0.0040 0.150 0.190 243×48 1017
A40.32 1.90 - 0.0040 0.150 0.190 323×64 251
A60.24 1.90 - 0.0060 0.150 0.190 243×48 314
A80.24 1.90 - 0.0080 0.150 0.190 243×48 307
A100.24 1.90 - 0.0100 0.150 0.190 243×48 313
B25.32 1.95 - 0.0025 0.135 0.170 323×64 201
B55.32 1.95 - 0.0055 0.135 0.170 323×64 311
B85.24 1.95 - 0.0085 0.135 0.170 323×64 296
D15.48 2.10 - 0.0015 0.120 0.1385 483×96 313
D30.48 2.10 - 0.0030 0.120 0.1385 483×96 198
D45.32sc 2.10 - 0.0045 0.0937 0.1077 323×64 301

Table 1: The gauge ensembles used in this study. The labelling of the ensembles follows the notations in
Ref. [5, 6]. In addition to the relevant input parameters we give the lattice volume (L/a)3×T/a and the
number of evaluated configurations Nconf.

Lüscher’s formula reads: qcotδ0(k) =Z00(1;q2)/π3/2 , where k is the scattering momentum and q
is a dimensionless variable defined via q = kL/2π . Z00(1;q2) is the Lüscher zeta-function which
can be evaluated numerically given the value of q2. Using the effective range expansion of s-
wave elastic scattering near threshold, we have k cotδ0(k) = 1

a0
+ 1

2 r0k2 +O(k4), where a0 is the
scattering length and r0 is the effective range parameter. Once the isospin-0 ππ interacting energy
Eππ is determined from lattice QCD simulations, the scattering length a0 can be calculated from
the following relation

2π

L
Z00(1;q2)

π3/2 =
1
a0

+
1
2

r0k2 +O(k4) . (3.1)

4. Finite volume spectrum

The discrete spectra of hadronic states are extracted from the correlation functions of the in-
terpolating operators that resemble the states. We define the interpolating operator that represents
the isospin-0 ππ state in terms of OS valence quarks

O I=0
ππ (t) =

1√
3
(π+

π
−(t) + π

−
π
+(t) + π

0
π

0(t)), (4.1)

with single pion operators summed over spatial coordinates x to project to zero momentum

π
+(t) = ∑

x
d̄γ5u(x, t), π

−(t) = ∑
x

ūγ5d(x, t), π
0(t) = ∑

x

1√
2
(ūγ5u− d̄γ5d)(x, t). (4.2)

Here u and d represent the OS up and down quarks, respectively. With OS valence quarks all three
pions are mass degenerate and will be denoted as MOS

π .
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D(t) X(t) B(t) V (t)

Figure 1: Diagrams contributing to the correlation function Cππ(t).
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Figure 2: Correlation functions of the operator O I=0
ππ and the single diagrams D,X ,B,V for the ensembles

cA2.09.48 and A40.24.

The energy of the isospin-0 ππ state can be computed from the exponential decay in time of the
correlation function Cππ(t)= 1

T ∑
T−1
tsrc=0〈O I=0

ππ (t+tsrc) (O I=0
ππ )†(tsrc)〉 , where T is the temporal lattice

extent. The four diagrams contributing to this correlation function, namely the direct connected
diagram D(t), the cross diagram X(t), the box diagram B(t) and the vacuum diagram V (t), are
depicted in Fig. 1. The correlation function can be expressed in terms of all relevant diagrams as
Cππ(t) = 2D(t)+X(t)−6B(t)+3V (t). Cππ and the contributions from individual diagrams D,X ,B
and V are plotted in Fig. 2 for the ensembles cA2.09.48 and A40.24 as examples.

Even though we have full SU(2) isospin symmetry in the valence sector when using OS va-
lence quarks as described above, we have to consider effects of unitarity breaking. In particular,
the n(n ≥ 1) unitary neutral pion states can mix with the operator O I=0

ππ via the vacuum diagram
V . Since the neutral pion is the lightest meson in the spectrum with Wilson twisted mass fermions
at finite lattice spacing, the appearance of such states with n = 1 (and maybe n = 2) will dominate
the large Euclidean time behaviour of the correlation function Cππ . The effect of this mixing can
be clearly seen in the plot of the correlation function Cππ(t) for the ensemble A40.24 (the right
panel of Fig. 2), in which the vacuum diagram starts to dominate Cππ(t) at around t = 10. While
for the ensemble cA2.09.48, this effect is much less prominent. Please note that this mixing is
purely a lattice artefact. Since the lattice artefacts of the twisted clover action are much smaller
than of the twisted mass action [5], we expect that the effect of the unitary neutral pion mixing
is much smaller for the N f = 2 ensembles compared to the N f = 2+ 1+ 1 ensembles. This is
indeed what we observed generally for the N f = 2 ensembles and the N f = 2+ 1+ 1 ensembles
used in this work. In order to resolve this mixing, we build a 2×2 matrix of correlation functions
Ci j(t) = 1

T ∑
T−1
tsrc=0〈Oi(t + tsrc)O

†
j (tsrc)〉, with i, j labeling the operator O I=0

ππ and the unitary neu-
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Ensemble aMOS
π aEππ Ensemble aMOS

π aEππ

cA2.09.48 0.11985(15) 0.2356(4) B85.24 0.2434(6) 0.4441(29)
cA2.30.48 0.15214(11) 0.3010(3) A30.32 0.2143(10) 0.4043(36)
cA2.60.32 0.18844(24) 0.3647(5) A40.24 0.2283(10) 0.4187(40)
D15.48 0.1082(3) 0.2067(13) A40.32 0.2266(8) 0.4417(20)
D30.48 0.1299(2) 0.2526(8) A60.24 0.2482(9) 0.4644(39)
D45.32 0.1466(6) 0.2686(17) A80.24 0.2663(7) 0.5033(21)
B25.32 0.1843(13) 0.3496(31) A100.24 0.2835(6) 0.5096(55)
B55.32 0.2105(4) 0.4051(23)

Table 2: OS pion masses and the ππ interacting energies in lattice units for all ensembles.

tral pion operator π0,uni(t) = ∑x
1√
2
(ūγ5u − d̄′γ5d′)(x, t) , where u and d′ are the (unitary) Wilson

(clover) twisted mass up and down quarks. We use d′ to distinguish it from OS down quark in
Eq. 4.2. The twisted mass up quark coincides with the OS up quark with our matching scheme of
the OS to the unitary action.

We use a shifting procedure C̃i j(t) = Ci j(t)−Ci j(t + 1) to eliminate contaminations constant
in time from so-called thermal states due to the finite time extension of the lattice. Solving the
generalized eigenvalue problem(GEVP) C̃(t)v(t, t0) = λ (t, t0)C̃(t0)v(t, t0) , the desired energy of
the ππ isospin-0 system Eππ can be extracted from the exponential decay of the eigenvalues λ (t, t0).
To further improve our results we adopt a method to remove excited state contaminations, which
we have recently used successfully to study η and η ′ mesons [13, 14]. See Ref. [15] for more
details about this method. In Table 2, we collect the values of Eππ obtained from the procedure
described above. The OS pion masses MOS

π are also given since they will be needed to compute the
scattering length.

5. Results

The scattering momentum k2 is calculated from the energies Eππ and the OS pion masses
listed in Table 2. Then the scattering length can be obtained from Eq. 3.1. Using the values of the
effective range r0 determined from χPT [16, 15], we investigated the contribution of O(k2) term
in the effective range expansion. For the ensembles cA2.09.48 and cA2.30.48, the value of 1

2 r0k2

is less than 3% of k cotδ (k). So we can safely ignore the O(k4) term and compute the scattering
length aI=0

0 using Eq. 3.1 for these two ensembles. The values of MOS
π aI=0

0 are plotted in Fig. 3(a)
as a function of MOS

π / f OS
π . For the ensemble cA2.60.32, the contribution of 1

2 r0k2 is rather large
– around 30% of k cotδ (k). Since the contribution of O(k4) is unclear, we refrain from giving the
scattering length for this ensemble. The reason for the invalidity of the effective range expansion
is probably due to virtual or bound state poles appearing in the isospin-0 ππ scattering amplitude
at the pion mass around 400 MeV, which is the OS pion mass of the ensemble cA2.60.32. Since
the OS pion mass for the N f = 2 + 1 + 1 ensembles are generally above 400 MeV, we do not
compute the scattering length for these ensembles either. However, the value of k cotδ (k) can be
computed up to lattice artefacts. Fig 3(b) presents the values of k cotδ (k) for all ensembles as a
function of MOS

π . One can see that k cotδ (k) changes from positive to negative with increasing OS

4
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Figure 3: (a): The values of MOS
π aI=0

0 for the ensembles cA2.09.48 and cA2.60.32. The black curve and the
grey band represent the chiral fit using only the data point with lower pion mass. The red point indicates
the extrapolated value at physical pion mass. (b): The values of k cotδ (k) for all ensembles as a function of
MOS

π .

pion mass. The pion mass range where the sign change happens is around 400 MeV - 600 MeV.
Correspondingly, the scattering length will change from positive infinity to negative infinity in this
range, which indicates the emergence of virtual or bound state poles in the scattering amplitude.

For the N f = 2 ensembles, chiral extrapolation is performed in order to obtain the scattering
length at the physical pion mass. Since we only have two data points, we fit the NLO χPT formula,
which contains one free parameter, to our data. The method we are applying here is valid only in
the elastic region. Therefore, the pion mass values must be small enough to be below threshold
where the σ meson becomes stable. Furthermore, the pion mass value should also be small enough
to make the chiral expansion valid. To be safe, we perform the chiral extrapolation using only the
data point with the lower pion mass ( 250 MeV). The fit results using the two data points are used
to estimate the systematics arising from chiral extrapolation. This leads to our final result for the
scattering length:

MπaI=0
0 = 0.198(9)stat(6)sys . (5.1)

6. Summary and discussions

The isospin-0 ππ scattering is studied with Lüscher’s finite volume formalism in twisted mass
lattice QCD using a mixed action approach with the OS action in the valence sector. The lowest
energy level in the rest frame is extracted for three N f = 2 ensembles and a large set of N f =

2+ 1+ 1 ensembles with many different values of pion mass. The scattering length is computed
for the two N f = 2 ensembles with the lowest pion mass values. After the chiral extrapolation,
our result at the physical pion mass is MπaI=0

0 = 0.198(9)(6) , which is compatible with the newer
experimental and theoretical determinations available in the literature. The value of k cotδ (k) near
threshold is computed for all ensembles. The pion mass dependence of the scattering properties of
this channel is briefly discussed. We cannot exclude that our result is affected by residual systematic
uncertainties stemming from unitarity breaking, which will vanish in the continuum limit. In order
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to avoid isospin breaking and unitarity breaking effects, we will repeat this computation with an
action without isospin breaking.
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