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Operators for simulating the scattering of two particles with spin are constructed. Three methods
are shown to give the consistent lattice operators for PN, PV , V N and NN scattering, where P,
V and N denote pseudoscalar meson, vector meson and nucleon. The projection method leads
to one or several operators OΓ,r,n that transform according to a given irreducible representation
Γ and row r. However, it gives little guidance on which continuum quantum numbers of total J,
spin S, orbital momentum L or single-particle helicities λ1,2 will be related with a given operator.
This is remedied with the helicity and partial-wave methods. There first the operators with good
continuum quantum numbers (J,P,λ1,2) or (J,L,S) are constructed and then subduced to the
irreps Γ of the discrete lattice group. The results indicate which linear combinations OΓ,r,n of
various n have to be employed in the simulations in order to enhance couplings to the states with
desired continuum quantum numbers. The total momentum of two hadrons is restricted to zero
since parity P is a good quantum number in this case.
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1. Introduction

Most of hadrons, particularly the exotic ones, are resonances that appear as cross-section peaks
in the strong scattering of lighter hadrons. This requires the study of two-hadron interactions by
simulating two-hadron scattering on the lattice. The first step is to build the operators that create
and annihilate the two-hadron system of the desired quantum numbers. Channels with two spinless
hadrons have been extensively studied. The simulations of two-hadron systems where one or both
hadrons carry non-zero spin focused mostly on partial wave L = 0. There is a great need for lattice
results on further channels or higher partial waves in this case.

We construct the lattice operators for two-hadron scattering, where one or both hadrons carry
spin and show that three independent methods lead to consistent results. The more detailed presen-
tation [1] provides also the proofs of the methods, explicit expressions for operators and all nec-
essary details to construct them. We consider channels that involve the nucleon N or/and vectors
V = J/ψ, ϒb, D∗,B∗, ... which are (almost) stable under strong interactions. The PN or V N scat-
tering is crucial for ab-initio study of baryon resonances and pentaquark candidates, PV is essential
for mesonic resonances and tetraquark candidates, while NN is needed to grasp two-nucleon inter-
action and deuterium. The periodic boundary conditions in a box of size L are considered, where
momenta p of non-interacting single hadrons are multiples of 2π/L. We focus on the system with
total momentum zero with the advantage that the parity is a good quantum number.

The resulting operators can be used to extract the discrete energies of eigenstates. These
energies render the scattering phase shift via the well-known Lüscher relation [2] which originally
considered two spin-less particles. This has been generalized to the scattering of two particles with
spin by various authors, most generaly by [3].

Certain aspects of constructing the lattice operators for scattering of particles with spin have
already been considered [4, 5, 6, 7, 8, 5, 9, 3] before [1]. Despite all previous work, various aspects
and proofs were lacking to build a reliable operator related to the desired continuum quantum
numbers, for example partial-wave L or single-hadron helicities λ1,2.

2. Single-hadron operators and their transformations

The single-hadron annihilation operators H(p) need to have the following transformation
properties under rotations R and inversion I in order to build two-hadron operators H(1)(p)H(2)(−p)
with desired transformation properties

RHms(p)R−1 = ∑
m′s

Ds
msm′s

(R−1)Hm′s(R p) , I Hms(p)I = (−1)PHms(−p) . (2.1)

For a particle at rest ms is a good quantum number of the spin-component Sz. The ms is generally
not a good quantum number for Hms(p 6= 0); in this case it denotes the eigenvalue of Sz for the
corresponding field Hms(0), which has good ms. Our two-hadron fields are built from simple (non-
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canonical) fields that satisfy (2.1), for example

P(p) = ∑
x

q̄(x)γ5q(x)eipx (2.2)

Vms=±1(p) =
∓Vx(p)+ iVy(p)√

2
, Vms=0(p) =Vz(p), Vi(p) = ∑

x
q̄(x)γiq(x)eipx, i = x,y,z

Nms=1/2(p) = Nµ=1(p) , Nms=−1/2(p) = Nµ=2(p) , Nµ(p)=∑
x

εabc[qaT (x)Cγ5qb(x)] qc
µ(x) eipx

where N1,2 are the upper two components of Dirac four-spinor Nµ=1,..,4 in the Dirac basis.
Another choice of building blocks could be the canonical hadron fields H(c)

ms (p)≡ L(p)Hms(0)
obtained after a boost L(p) from 0 to p. Those are less practical since they depend on the hadron
mass m, energy E and velocity v, for example N(c)

1/2(px) ∝ N1(0) +
px

m+E N4 and V (c)
ms=1(px) =

[−γVx(px)+ iVy(px)]/
√

2 with γ = (1− v2)1/2 [1].

3. Transformation properties of two-hadron operators

The two-hadron operators with zero momentum have good parity P and have to transform as

ROJ,mJ (Ptot =0)R−1 = ∑
m′J

DJ
mJm′J

(R−1)OJ,m′J (0) , R ∈ O(2), IOJ,mJ (0)I = (−1)POJ,mJ (0) . (3.1)

Such continuum-like operators will present an intermediate step below and the only relevant rota-
tions will be those of the discrete group.

The continuum rotation group is reduced to the cubic group on a cubic lattice. It has 24
elements R ∈ O for integer J and 48 elements R ∈ O2 for half-integer J. The number of symmetry
elements gets doubled to R̃= {R, IR}∈O(2)

h when inversion is a group element. The representations
(3.1) with given J and mJ are reducible under O(2)

h , so we seek the annihilation operators that
transform according to the corresponding irreducible representation (irrep) Γ and row r

ROΓ,rR−1 = ∑
r′

T Γ

r,r′(R
−1)OΓ,r′ R ∈ O(2), IOΓ,rI = (−1)POΓ,r . (3.2)

The systems with integer J transform according to irreps Γ = A±1,2, E±, T±1,2, while systems with
half-integer J according to Γ = G±1,2 ,H±. We employ the same conventions for rows in all irreps
as in [10], where explicit representations T Γ

r,r′(R) are given.

4. Two-hadron operators in three methods

Here we present two-hadron operators that transform according to (3.2) derived with three
methods. The continuum-like operators (3.1) will appear as an intermediate step in two of the
methods. Their correct transformation properties (3.1,3.2) are proven in Appendix of [1].

4.1 Projection method

A projector to the desired irrep Γ and row r on an arbitrary operator renders [11]

O|p|,Γ,r,n = ∑
R̃∈O(2)

h

T Γ
r,r(R̃) R̃H(1),a(p)H(2),a(−p)R̃−1 , n = 1, ..,nmax . (4.1)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
9
8

Operators for scattering of particles with spin Sasa Prelovsek

The R̃ ∈ O(2)
h in (4.1) is the operator symbolizing rotations R possibly combined with inversions

(R is reserved for rotations only) where the action of rotation R or inversion I on all H = P,V,N
is given in (2.1). The representation matrices T Γ(R̃) for all elements R̃ are listed for all irreps in
Appendix A of [10].

The Ha are arbitrary single hadron lattice operators of desired |p| and any p and ms, for exam-
ple operators (2.2) or their linear combinations. We have taken Ha with all possible combinations
of direction p and polarizations of both particles ms1 and ms2 (for vectors we chose Vx, Vy and Vz as
Ha). For fixed |p|, Γ and r one can get one or more linearly independent operators O|p|,Γ,r,n which
are indicated indexed by n. As an illustration we present resulting PV operators for irrep T+

1 and
|p|= 1,

O|p|=1,T+
1 ,r=3,n=1 ∝ ∑

p=±ez

P(p)Vz(−p) , O|p|=1,T+
1 ,r=3,n=2 ∝ ∑

p=±ex,±ey

P(p)Vz(−p) , nmax = 2 ,

while others are listed in [1].
The projection method is very general, but it does not offer physics intuition what O|p|,Γ,r,n

with different n represent in terms of the continuum quantum numbers. This will be remedied with
the next two methods, that indicate which linear combinations of On correspond to certain partial
waves or helicity quantum numbers.

4.2 Helicity method

The helicity λ is the eigenvalue of the helicity operator h ≡ S· p/|p|. It is a good quantum
number for a moving particle with any p (while ms is a good quantum for p = 0 and p ∝ ez, but
not in general). To obtain a helicity single-hadron annihilation operator Hh

λ
(p), one starts from

an operator Hms=λ (pz) with momentum pz ∝ ez that has good ms. This state is rotated from pz to
desired direction of p with Rp

0 [12, 7]

Hh
λ
(p)≡ Rp

0 Hms=λ (pz) (R
p
0)
−1, pz ∝ ez, |pz|= p . (4.2)

The upper index h indicates that the polarization index (λ ) stands for the helicity of the particle
(not ms). Simple examples of Hpz,ms=λ can be read-off from (2.2) and the action of Rp

0 on them
is given by (2.1). The arbitrary rotation R rotates the p and S in the same way, so the helicity
RHh

λ
(p)R−1 ∝ Hh

λ
(Rp) does not change [12, 7].

The two-hadron helicity operator is built from single-hadrons of given helicities λ1,2 and arbi-
trary back-to-back momenta p within a given |p|

O|p|,J,mJ ,λ1,λ2,λ = ∑
R∈O(2)

DJ
mJ ,λ

(R) RH(1),h
λ1

(p)H(2),h
λ2

(−p)R−1 . (4.3)

The correct transformation properties (3.1) of the above operator are proven in Appendix of [1].
The final operator with desired parity P =±1 is obtained by parity projection 1

2(O +PIOI)

O|p|,J,mJ ,P,λ1,λ2,λ =
1
2 ∑

R∈O(2)

DJ
mJ ,λ

(R) RRp
0 [H(1)

ms1=λ1
(pz)H

(2)
ms2=−λ2

(−pz) (4.4)

+PIH(1)
ms1=λ1

(pz)H
(2)
ms2=−λ2

(−pz)I] (R
p
0)
−1R−1 ,

3
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where we have expressed Hh (4.2) with fields Hms(pz) (2.2) that have good quantum number ms.
The actions of inversion I and the rotation R on the fields Hms are given in (2.1). One chooses
particular p for a fixed |p| and performs rotation Rp

0 from pz to p. There are several possible
choices of Rp

0 , but they lead only to different overall phases for the whole operator (4.4) [1], which
is irrelevant.

As an illustration we present PV operators in the JP = 1+ channel

O|p|=1,J=1,mJ=0,P=+,λV=0
∝ ∑

p=±ez

P(p)Vz(−p) , O|p|=1,J=1,mJ=0,P=+,λV=1
∝ ∑

p=±ex,±ey

P(p)Vz(−p) ,

where the simplest choice p = pz = (0,0,1) and Rp
0 = 1 in (4.4) can be used.

The helicity operators (4.4) would correspond to irreducible representations only for the con-
tinuum rotation group. These represent reducible representation under the discrete group O(2). In
simulations it is convenient to employ operators, which transform according to irreducible repre-
sentations Γ and row r of G = O(2). Those are obtained from OJ,mJ by the subduction [13, 14]

O[J,P,λ1,λ2,λ ]
|p|,Γ,r = ∑

mJ

S J,mJ
Γ,r O|p|,J,mJ ,P,λ1,λ2,λ . (4.5)

The subduction coefficients S are given in Appendices of [13, 14] for all irreps1. We expect
that the subduced operators O[J,P,λ1,λ2,λ ]

|p|,Γ,r will carry the memory of continuum J,λ1,λ2,λ and will
dominantly couple to eigenstates with these quantum numbers [13].

4.3 Partial-wave method

Often one is interested in the scattering of two hadrons in a given partial wave L. The orbital
angular momentum L and total spin S are not separately conserved, so several (L,S) combinations
can render the same J, mJ and P, which are good quantum numbers. Nevertheless, the L and S are
valuable physics quantities to label continuum annihilation field operator:

O|p|,J,mJ ,S,L = ∑
mL,mS,ms1,ms2

CJmJ
LmL,SmS

CSmS
s1ms1,s2ms2 ∑

R∈O
Y ∗LmL

(R̂p)H(1)
ms1(Rp)H(2)

ms2(−Rp) . (4.6)

The operator has parity P = P1P2(−1)L and its correct transformation property under rotation (3.1)
is demonstrated in Appendix of [1]. The operator was considered for nucleon-nucleon scattering in
[4] (this reference uses YLmL where we have Y ∗LmL

). The C are Clebsch-Gordan coefficients, p is an
arbitrary momentum with desired |p|, YLmL is a spherical harmonic. Simple choices of one-particle
operators H are listed in (2.2). Here is an example of PV operators with the same J and S

O|p|=1,J=1,mJ=0,L=0,S=1
∝ ∑
p=±ex,±ey,±ez

P(p)Vz(−p) ,

O|p|=1,J=1,mJ=0,L=2,S=1
∝ ∑

p=±ex,±ey

P(p)Vz(−p)−2 ∑
p=±ez

P(p)Vz(−p) .

The operators that transform according to irrep Γ and row r of G = O(2) are obtained from
OJ,mJ by the subduction [13] using the same coefficients S as in (4.5)

O[J,S,L]
|p|,Γ,r = ∑

mJ

S J,mJ
Γ,r O|p|,J,mJ ,S,L . (4.7)

1For the T1 we choose rows as x,y,z which differs from [13, 14], and those S are listed in Appendix of [1].
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One expects that the subduced operators O[J,S,L]
|p|,Γ,r carry the memory of continuum J,S,L and domi-

nantly couple to eigenstates with these quantum numbers.

5. Operators for PV , PN, V N and NN scattering

The explicit expressions for operators H(1)(p)H(2)(−p) for PV , PN, V N and NN scattering in
three methods are collected in our longer publication [1]. Operators for the lowest two momenta
|p|= 0,1 (in units of 2π/L) are presented for all irreducible represenations. Expressions for higher
|p| can be obtained using the general expressions (4.1), (4.4,4.5) and (4.6,4.7) for the three methods,
respectively.

Let us illustrate the results on operators for PV scattering in the irreducible representation T+
1 .

This irrep contains states with positive parity and J = 1 (as well as J ≥ 3). The operators for the
row r = 3 (z-component) are

|p|= 0 : OT+
1
= O[J=1,L=0,S=1]

T+
1

= P(0)Vz(0) (5.1)

|p|= 1 : OT+
1 ,n=1 = P(ez)Vz(−ez)+P(−ez)Vz(ez)

OT+
1 ,n=2 = P(ex)Vz(−ex)+P(−ex)Vz(ex)+P(ey)Vz(−ey)+P(−ey)Vz(ey)

O[J=1,P=+,λV=±1,λP=0]
T+

1
= OT+

1 ,n=2

O[J=1,P=+,λV=0,λP=0]
T+

1
= OT+

1 ,n=1

O[J=1,L=0,S=1]
T+

1
= OT+

1 ,r=1,n=1 +OT+
1 ,n=2

O[J=1,L=2,S=1]
T+

1
=−2 OT+

1 ,r=1,n=1 +OT+
1 ,n=2 . (5.2)

The projection method renders two linearly independent interpolators OT+
1 ,n=1,2 at |p|= 1 for each

row. This method does not tell which partial-waves and single-hadron helicities correspond to each
operator. This is remedied by the partial-wave and helicity2 operators. The expressions O[J=1,L,S=1]

T+
1

(5.1) indicate which linear combinations of OT+
1 ,n need to be employed to study L = 0 or L = 2

partial waves. Note that both partial waves inevitably contribute to the same JP = 1+ channel
even in the continuum PV scattering with S = 1. The O[J=1,P=+,λV ,λP]

T+
1

(5.1) indicate that OT+
1 ,n=1

is relevant for λV = 0, while OT+
1 ,n=2 is relevant for |λV | = 1. All methods lead to two linearly

independent operators that are consistent with each other.
In general, one or several linearly independent operators OΓ,r,n arise from the projection method

for PV , PN, V N and NN scattering in given irrep Γ. The explicit partial-wave operators in [1] indi-
cate which linear combinations of OΓ,r,n are relevant to study the channel (J,L,S). The expressions
for helicity operators in [1] tell us which linear combinations of OΓ,r,n are relevant to study scat-
tering with given (J,P,λ1,λ2). All three methods render the same number of linearly independent
operators, which also agrees with the number based on [9]. The explicit expressions for operators
with |p| = 0,1 also show that the three methods lead to the consistent results, i.e. operators from
partial-wave or projection method can always be expressed as a linear combination of operators
from projection method.

2We consider helicity only for the case |p| 6= 0.
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6. Conclusions

We construct two-hadron interpolators which are relevant to simulate PV , PN, V N or NN
scattering using quantum field theory on the lattice. Here P, V and N denote pseudoscalar, vector
and nucleon, respectively. The focus is on the case with total-momentum zero where parity is
a good quantum number. The projection method is a general mathematical tool which leads to
one or several operators OΓ,r,n that transform according to given irrep Γ and row r, but it does
not give much insight on the underlying continuum quantum numbers. The partial-wave and the
helicity methods indicate which linear combinations OΓ,r,n of various n have to be employed in
the in order to enhance couplings to the states with desired continuum quantum numbers. The
partial-wave method renders operators O[J,S,L]

Γ,r with enhanced couplings to two-hadron states in
partial wave L, total spin S and total angular momentum J. The helicity method provides operators
O[J,P,λ1,λ2]

Γ,r where each hadron has good helicity λ1,2. All three formally independent methods lead
to consistent results.
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