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We discuss chiral symmetry restoration and eigenmodeisatain in finite-temperature QCD
by looking at the lattice Dirac operator as a random Hami#ton\We argue that the features of
QCD relevant to both phenomena are the presence of ordee iRdlyakov line configuration,
and the correlations that this induces between spatias lagkoss time slices. This ties the fate
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finement/deconfinement transition in triggering both pmeena.
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1. Introduction

As is well known, in QCD both the confining and chiral properties of the themdergo
a rapid change around a temperatlige~ 155 MeV [1]. Moreover, in models where there is a
genuine phase transition, rather than just an analytic crossover like in @€tnfihement and the
chiral transition take place at the same temperature. Such models incly@e &id SU3) pure
gauge theory, S[B) gauge theory with uninmproved staggered fermionblpe- 4 lattices [2], and
SU(3) gauge theory with adjoint fermions [3]A convincing explanation of why deconfinement
and the chiral transition take place together is still lacking.

In recent years there has been growing evidence of a third phenorteing place in QCD
aroundT;, namely the change in the localisation properties of the low-lying eigenmodes of the
Dirac operator [4, 5, 6, 7, 8, 9, 10, 11]. While beldwall the modes are delocalised [12], above
T, the lowest modes are spatially localised on the scale of the inverse temperpttoe, critical,
temperature-dependent poikd(T) in the spectrum (“mobility edge”); modes abo¥gare again
delocalised. The localisation/delocalisation transition at the mobility edge is a sembgrdhbhase
transition with divergent correlation length [9]. ExtrapolatifhgT) asT is decreased, one finds
that A¢(T) vanishes at a temperature compatible wigh The low-lying modes play a crucial
role in physical observables, in particular in the formation of a chiral cosake, and therefore
for the spontaneous breaking of chiral symmetry $B). It is therefore not so surprising that the
localisation properties of these modes change at the chiral transition.

The appearance of localised modes in the deconfined/chirally restored jshaot a unique
feature of QCD, but has been observed also in other QCD-like models18].6n models where
the transition is sharp one can ask more meaningfully whether localisation apjggdratrthe
critical point. In the above-mentioned model with unimproved staggered ferriignshich dis-
plays a first-order deconfining and chiral transition, the onset of lotialishas been shown to take
place precisely at the critical temperature [13]. Understanding localisatiort thigfiefore help in
understanding the relation between deconfinement and the chiral transition.

2. QCD, the Anderson M odel and the Dirac-Anderson Hamiltonian

The best known model displaying localisation of eigenmodes is the celebratedsdndnodel
(AM) [14], which provides an approximate description of (non-interagtieigctrons in “dirty”
conductors. The effect of impurities is modelled by a random on-site potesmdidéd to the usual
hopping terms of the tight-binding Hamiltonian; the amount of impurities/disorder tsail@d by
the widthW of the range in which the random potential takes its values. In the AM, eiggesno
at the band edge are localised, for energies beyond the so-called mobjjéy st the localisa-
tion/delocalisation transition within the spectrum is a second-order phase transitictiwegittpent
correlation length. Concerning localisation of the eigenmodes, QCD and the Akhas com-
pletely analogous. Since in the AM the position of the mobility edge is determin&d, yhile
in QCD it is controlled by the temperatufie one is led to identifyl as the parameter effectively
controlling the amount of disorder in QCD. There is, however, more than a simplegy between

1In the latter case the deconfinement transition is accompanied by a tlestairiral transition signalled by a jump
in the chiral condensate, while a second transition, fully restoring chinaireetry, takes place at a higher temperature.
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the two models. In fact, the correlation-length critical exponent in QCD wasdfdo be compat-
ible [9] with that of the 3D unitary AM [15F Here “unitary” refers to the symmetry class of the
model in the classification of Random Matrix Theory (RMT) [12]. Moreowdgenmodes at the
mobility edge are multifractal [10], with multifractal exponents matching those of ther8ary
AM [16]. These results have been obtained using the staggered diatiogtisf the Dirac operator.
The fact that the transitions in the two models share the same universality dlas®ican
explanation. From the point of view of RMT, the QCD staggered Dirac dpeia a random
matrix of the unitary class, with off-diagonal noise provided by the fluctunataf the gauge links.
Moreover, QCD at finite temperature is a 4D model. The unitary AM, on the othet, ha 3D
with mostly diagonal disorder. A gqualitative explanation for the matching of usality classes is
the following [7, 17, 18]. FofT > T, time-slices are strongly correlated, QCD is effectively 3D,
and the quark eigenfunctiong(t,X) are expected to look qualitatively the same on all the time-
slices. Moreover, working in the temporal gauge, one seegjtftak) obeys effective boundary
conditions in the temporal direction, which involve the local Polyakov line (LX), namely
Y(Nt,X) = —P(X)(0,X). HereNy is the temporal extension of the system in lattice units. Since
P(X) fluctuates in space, it provides an effective 3D source of diagonaid#is This explanation
leads, however, to another question. The effective boundary corslémply both above and below
Tc, and similarly the PL fluctuates in space in both phases of the theory. Onleath tis justify why
QCD is effectively 4D at lowl', and why the effective boundary conditions are ineffective there.
In order to better understand the relation between QCD and the unitary Allyiiog Ref.
[18], we make the connection explicit between the staggered Dirac op&atgand Anderson-
type Hamiltonians. We start from the “Hamiltoniahl = —iDstag split it into a “free” and an
“interaction” part,H = Ho + H;, and then work in the basis of the “unperturbed” eigenvectors of
Ho. The physically most sensible choice is to identify with the temporal hoppinggHo)xx =
”“Z(ix) [Ua(t,X) &1 —U_a(t,X) 1] x, thus leaving the spatial hoppings as the spatially isotropic
interaction part(H, )xx = Z?:lan(ix)[Uj(t,X)éerjX/ —U_j(t,X) &5 %]0y. Herex = (t,X), Uy(X) =
Uy (t,X) are SUN;) gauge links withU_,(x) = U,I(x— 1), and ny(X) are the usual staggered
phases. In the temporal diagonal gauge ondhas 1Vt # Ny — 1, andUs (Nt — 1,X) = P(X) =
diag@®®), a=1,...,N, having diagonalised each PL with a time-independent gauge transfor-
mation. We choosg , ¢ (X) = 0, any other choice leading to a unitarily equivalent Hamiltonian.
In this gauge it is straightforward to diagonalidg, finding for the unperturbed eigenvalues

A3 = na(X) sinwan(®),  @ak(X) = g (T+ @a(X) +271K) , (2.1)

wherew,k(X) are the effective Matsubara frequencies. The various indicesteefiee spatial sit&
where the eigenmode is localised, and the colour companand the temporal momentum (TM)
k=0,...,Ny — 1 to which it corresponds. In the basis of the unperturbed eigenvamiernds

(X
Hyy = SgD(X) + 331 15 (S gV (%) — S jgVoj(®)]
D) akp = A5 Bandi (2.2)
—1 2 (1K) i<t [ (RE]) —@a(R td
VAT :ﬁzi\l:-role'NT( ) ol iy [90(%E]) — @ (%)) [Uij)(t’x)}ab7

2The unitary AM is obtained by multiplying the hopping terms in the AM by randéwase factors, mimicking the
presence of a magnetic field.
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Figure 1: Spectral density (left) and spectral statistidg s (right) in our toy model.

with Ug?) (t,X) the spatial gauge links in the temporal diagonal gauge.

The “Dirac-Anderson Hamiltonian” of Eq. (2.2) is a 3D Anderson-type Hami#no with
internal degrees of freedom, corresponding to colour and TM, ahadimg both diagonal and off-
diagonal noise. Unlike the AM, here the control parameter (the temperaloes)not change the
overall strength of the disorder (which is always bounded in magnitudejather its type and its
spatial distribution, which are completely different in the confined and detahfyhases of QCD.

In the deconfined phase, the PL gets ordered alomgth fluctuations away from the ordered
value forming “islands” of “wrong” PLs. This directly reduces the densitysmall unperturbed
eigenvalues. Moreover, it leads to a reduction of the hopping terms’ etiigeare off-diagonal in
TM, as a consequence of the correlations among spatial links on differenslites-induced by the
ordering. Since “wrong” PLs yield smaller unperturbed eigenvalues eapects them to provide
an “energetically” favourable place for the quark eigenfunctions to livéhtars allowing for smaller
eigenvalues. Moreover, the mixing of different TM components is handisiae of these islands.
In other words, the “islands” provide localising “traps” for the low eigenie® The approximate
decoupling of different TM components leads to having in pradticeveakly coupled, effectively
3D systems. The ordering of the PLs is also expected to affect the spkisity of the low modes,
and therefore the fate of chiral symmetry. Indeed, mixing of TM componentst® “push” the
modes towards the origthand its reduction, combined with a smaller density of low unperturbed
modes, leads us to expect a vanishing spectral density at@p,

In the low-T phase, on the other hand, there is no spatial structure in the diagorglamisno
strong correlations among time-slices, so no localisation is expected. The vBMotsmponents
of the wave function are effectively mixed by the hopping terms, and so TMeffetstively as a
fourth dimension, i.e., one deals with a single effectively 4D system. Therldagesity of low
unperturbed modes and the fact that they can easily mix is expected to leadesaishingo(0).

Summarising, the relevant feature both for chiral symmetry restoration aalisktion of the
lowest modes is expected to be the ordering of the PLs. In the absencdeningrwe expect
instead to have £SB and delocalisation. This ultimately links both phenomena to the confining
properties of the theory, thus providing an explanation for the coincidehite chiral transition,
the onset of localisation, and deconfinement, the latter being the “fundamphwatbmenon on
which the other two depend.

3This can be seen qualitatively using lowest-order perturbation theory.
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3. Toy mode

In order to check the arguments of the previous Section, we have caestrai€CD-based
toy model, keeping only the features that are expected to be relevant fal sjninmetry break-
ing/restoration and delocalisation/localisation of the lowest modes [18]. As we sigtabkove,
these should be the ordering of the PLs, and the correlation between Epksian different time
slices that this induces. We thus considered a Hamiltonian with the same strastiive Dirac-
Anderson Hamiltonian, Eq. (2.2), and replaced the PL phgged and the spatial gauge links
Uit?) (t,X) with appropriate toy-model counterpagd andu..j(t,X). In particular,¢ are taken to
be the phases of a set of complex-spin variables, constraingd ¢@§= 0, andu;(t,X) are SUN)
matrices. Writing the Dirac-Anderson Hamiltonian as a functidhat Jf[(pa(i),uf?) (t,X)], the
toy model Hamiltonian is then defined by% = J#’ (@2, u(t,%)].

The dynamics obeyed by the toy-model variables is constructed mimicking ttrein€oun-
terparts in gauge theory. The important feature of the PL dynamics is thermésof an ordered
and of a disordered phase. This is easily achieved for our complex gptakibg a spin model of
the following form:

BHnoise: _N% ZX,j,aCOS((pxaﬁ - (R?) - W{j—l) Zz,a<b00~°(¢za - (be) . (3-1)

Forh+# 0 this model has @y, symmetry, which is spontaneously broken at Ig8gd he system can
then select one of ths. vacuag? = 2—? Va, X (corresponding to the center elements of B) along
which the PL can align). The important feature of the dynamics of spatiakgalg is instead the
appearance of correlations among time-slices when the PLs get ordeigds dthieved by using
the Wilson action without spatial plaquettes, and dropping the fermion determiffameffect of
the PLs on the links is reproduced by coupling the toy-model links to the complex sagegh
treated as an external field. Denoting wjifX) = diag(€® ), we thus define the toy-link action

Si=—BReTr5y 53 {ul (0P (Ru; (N~ 1Rp(R+]) + T 2 LYul(t+1.0) b, (3.2)
wheref% plays the role of gauge coupling, and the expectation value of an obsewase

(0)=J D(pe_ﬁHnoise[q)]}_1/D(pe—BHnoise[(P} [%} ‘ (3.3)

For our numerical investigation we have employed the minimal version of this toy Inaatthe
only two colours and two time-sliceBl; = Nt = 2. In this case there is a single relevant phase,
o= qo% = —c,azz, and only one relevant Matsubara frequengx) = “*‘—Z", and the “unperturbed”
eigenvalues are simphns(X) cos%. Since we are interested mainly in the dependencg, dre.,
on the ordering of the spin system, we fixee: 1.0, which leads to a criticgB; ~ 0.3, separating
the disordered < ;) and orderedff > [3.) phases, corresponding to the confined and deconfined
phases of a gauge theory. The “gauge coupling” was also fixédicﬁ.o. We then studied the
localisation properties of the low modes, and “chiral symmetry breaking”, dkfieee as the
presence of a nonzero spectral density at the origin.

In Fig. 1, left panel, we show the spectral density at the low end of therspecboth in the
disordered and in the ordered phases. While in the disordered phas@®@a nonvanishing(0)
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Figure 2: Spectral density in tweaked versions of the toy moqﬁel:: 0 (top left), TM-diagonal hopping
terms (top right), temporal PBC (bottom left), and increhseperturbed eigenvalues (bottom right).

and so “chiral symmetry breaking”, in the ordered php$@) = 0 and “chiral symmetry” is re-
stored. In order to detect localisation of the eigenmodes we have exploiteatthbdt delocalised
modes obey RMT statistics, while localised modes obey Poisson statistics. We aavweoth-
puted the integrated probability denslts of the unfolded level spacings, los = §‘5dsa (s),
with § = ﬁ HereP, (s) is the probability density of computed locally in the spectrum in

a small interval around. Our results are shown in Fig. 1, right panel, together with the predic-
tions of Poisson statistics and of the appropriate ensemble of RMT, which in $keathand is
the Gaussian Symplectic Ensemble. The transition from Poisson to RMT statisticsaatewiadd
becomes sharper as the volume of the system is increased, thus signalingsthrecp of a phase
transition in the thermodynamic limit. The mobility edge is determined by the crossing padire of
curves corresponding to different volumes, and increases as themg of the spins increases.

Our minimal toy model is thus able to reproduce the qualitative features of Q@dvddieg
chiral symmetry and localisation. By tweaking the toy model one can furthekdhecrelative
importance of the two effects caused by ordering, i.e., the decreassitydainlow unperturbed
modes and the decreased mixing of the wave function’s TM components. Thesasgguences
are expected to be observed in QCD. In Fig. 2 we show the spectratydebtined in several
modifications of the toy model. In the top left panel, correlations across time-slieegsraoved
by setting[? =0, in the ordered phase of the spin model: as a result, chiral symmetry gkénbro
In the top right panel, the mixing between TM components is removed by makingofigny
terms diagonal in TM, in the disordered phase: this restores chiral symnhettlye bottom left
panel, boundary conditions in the temporal direction are switched from antietmo periodic,
in the ordered phase, so increasing the density of low unperturbed moldieat symmetry is
broken. Finally, in the bottom right panel we artificially increase the ungegtiieigenvalues, in the
disordered phase: chiral symmetry is restored. In all cases, chiral Syynrastoration/breaking
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is accompanied by localisation/delocalisation of the low modes. In conclusion, bothgnaikin
different TM components of the quark wave function (or lack thereof) #ueddensity of low
unperturbed modes are crucial for the fate of chiral symmetry and localisation

4. Conclusions

Recasting the staggered Dirac operator in the form of an Anderson-likgltidaian clarifies
the relation between the localisation/delocalisation transitions in QCD and in the unitdeysom
model. Moreover, it allows a better understanding of the localisation mechanisighatemper-
ature, and sheds some light on mode delocalisation and on the formation of a ohidahsate
via accumulation of small eigenmodes at low temperature. The fate of localisationiesddbygmn-
metry seems to be determined by the ordering of the Polyakov lines, and thus uitilmatbe
confining properties of the theory. Further work is certainly neededyalwese lines.
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