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We present our results on the low-temperature scan of the phase diagram of dense two-color QCD
with N f = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks.
At small chemical potential we observe the hadronic phase, where the theory is in a confining
state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate.
At the critical point µ = mπ/2 we observe the expected second order transition to Bose-Einstein
condensation of scalar diquarks. In this phase the system is still in confinement in conjunction
with non-zero baryon density, but the chiral symmetry is restored in the chiral limit. We have
also found that in the first two phases the system is well described by chiral perturbation theory.
For larger values of the chemical potential the system turns into another phase, where the relevant
degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation
takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry
is restored and the system is very similar to the quarkyonic state predicted by SU(Nc) theory at
large Nc.
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1. Introduction.

The phase diagram of QCD is of high importance for several fields of observational physics
like cosmology, astrophysics and relativistic heavy ion collisions. Unfortunately, lattice simulation
of QCD can not be applied today to arbitrary chemical potential because of the sign problem [1].
The origin of the sign problem is that the fermion determinant becomes complex-valued which
makes impossible the direct simulation by importance sampling of gauge field configurations. An
alternative to lattice simulation of SU(3) QCD with µ 6= 0 is the simulation of SU(2) QCD (also
called QC2D). Introduction of a chemical potential to the latter theory does not lead to a sign
problem, so one can apply the standard lattice approach to study this theory. Although a two-color
world differs from the tree-color world, lattice study of QC2D with chemical potential can provide
us with important information about the properties of QCD with non-zero baryon density (EoS,
generation of the fermion mass gap, etc.). We would like also to note that it is interesting to study
the QC2D by its own due to a rich structure of the phase diagram.

The properties of QC2D were studied theoretically within the following approaches: ChPT [2,
3, 4], the NJL model [5, 6, 7], FRG [8, 9], random matrix theory [10, 11, 12]. Principally, these
studies have revealed the following phase structure of low temperature QC2D with three subsequent
phases: (1) 0 < µ < µc (hadronic phase), (2) µc < µ < µd (“baryon onset” with a superfluid
condensate due to Bose-Einstein condensation [BEC]) and (3) µd < µ (the phase with diquark
condensation due to the Bardeen-Cooper-Schrieffer mechanism [BCS] [13]).

The first lattice study of QC2D with chemical potential and Wilson fermions was performed
by A. Nakamura in [14]. Futher lattice investigation of dense two-color QCD was continued by J.
Kogut and collaborators using staggered quarks. In [15] eight-flavor theory was investigated and
in [16, 17, 18] the authors studied N f = 4 theory. What concerns a low temperature scan of the
phase diagram, these authors observed the succession of a hadronic phase and the BEC phase, with
their properties well described by ChPT, but they didn’t find a BCS phase.

The main activity in two-color QCD was later continued by the Swansea group (S. Hands and
collaborators) for the two-flavor theory with Wilson fermions [19, 20, 21, 22]. In a low temperature
scan of the phase diagram the authors observed a hadronic phase, followed by the BCS phase with
deconfinement, but did not encounter the BEC phase.

In this paper we are going to study the QC2D phase diagram with N f = 2 flavors going back
to the lattice simulation of staggered fermions using the rooting procedure. In the present paper we
are going to carry out a µ1 scan at low temperature of the QC2D phase diagram.

2. The lattice set-up

In our simulations we used the standard Wilson action for the SU(2) gauge fields and staggered
fermions for the fermionic degrees of freedom. The chemical potential µ was introduced into the
lattice Dirac operator through the multiplication of the links along and opposite to the temporal
direction by factors e±µa respectively [23]. In addition the diquark condensate source term2 was
introduced in the action to study numerically the spontaneous breakdown of UV (1) symmetry.

1Quark chemical potential is understood by µ here and below.
2In two-color QCD it is possible to construct local, gauge-invariant and colorless diquark condensate [15, 2].
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Integrating out the fermion fields the partition function for the theory can be written as

Z =
∫

DUe−SG ·P f

(
λτ2 M
−MT λτ2

)
=
∫

DUe−SG ·
√

det(M†M+λ 2) , (2.1)

where M is the staggered Dirac operator and λ is the diquark source. Note that the pfaffian P f is
strictly positive, such that one can use Monte-Carlo methods to study this system. Partition function
(2.1) corresponds to N f = 4 in the continuum limit. In the present paper we are going to study

Z =
∫

DUe−SG ·
[
det(M†M+λ

2)
]1/4

, (2.2)

which corresponds to the theory with N f = 2 dynamical fermions in the continuum limit.
To study the phase diagram of QC2D with N f = 2 flavors we used a 163× 32 lattice, simu-

lating with β = 2.15, ma = 0.005, the lattice spacing a = 0.112(1) fm and the pion mass Mπ =

378(4) MeV (detailed description of the action and parameters may be found in [24]). The simula-
tion was carried out for a set of values of the chemical potential µ spanning the region µ ∈ [0;1759]
MeV (µa ∈ [0.0;1.0]). For each value of µ ∈ [0;1055] MeV (µa ∈ [0.0;0.6]) we carried out the
simulation at three values of the diquark source: λ = 0.001, 0.00075 and 0.0005, the measured
data have been then extrapolated to λ = 0. Simulations with higher µ are more computationally
demanding, thus for µ > 1055 MeV (µa > 0.6) only the value λ = 0.0005 was used.

3. Numerical results

3.1 The diquark condensate

In Fig. 1 we plot the diquark condensate 〈qq〉, obtained by linear extrapolation to λ = 0,
as a function of µ in the region µ ∈ [0.0;440] MeV (µa ∈ [0.0;0.25]). It may be seen, that for
µ ≤ 141 MeV (µa ≤ 0.08) the diquark condensate 〈qq〉 is compatible with zero, i.e. the system
is in the hadronic phase. However, for µ ≥ 176 MeV (µa ≥ 0.1) the diquark condensate starts to
deviate from zero. If we are sufficiently far from the position of the phase transition, one can try
to use ChPT [2, 3] to describe the data. In particular, ChPT predicts that at µc = mπ/2 there is the
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Figure 1: The diquark condensate as a function of µ .
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Figure 2: The ratio 〈qq〉/(T µ2) as a function of µ .
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transition from the hadronic phase to the phase of Bose-Einstein condensation of scalar diquarks
with 〈qq〉 6= 0, and the behaviour of the diquark condensate above the transition would be given

by the formula 〈qq〉= 〈q̄q〉0
√

1− (µc/µ)4 , where 〈q̄q〉0 is the chiral condensate at zero chemical
potential. Fit with this formula in the region µ ∈ [263;352] MeV (µa ∈ [0.15;0.20]) provides
µc = 215(10) MeV (aµc = 0.122(6)) with χ2/do f = 2.5. We plot this fit in the Fig. 1.

One can try to fit the data by another function: 〈qq〉 = 〈q̄q〉0
√

1− (µc/µ)2α with the power
α considered as an additional fitting parameter. The fit with this formula in the same region µ ∈
[263;352] MeV (µ ∈ [0.15,0.20]) gives µc = 193(10) MeV (aµc = 0.110(6)) with χ2/do f =

1.4. From these examples one sees, that the position of the critical point determined from the
fitting procedure strongly depends on the fitting function. Nevertheless, the results for µc and the
behaviour of 〈qq〉 are in reasonable agreement with ChPT predictions in the region µa∈ [0.0;0.20].

Let us consider the region of larger chemical potential µ > 352 MeV (µa > 0.2). To under-
stand what happens in this region, we plot in Fig. 2 the linearly extrapolated diquark condensate,
divided by T µ2, as a function of µ . As it is visible from this plot, in the region µ ∈ [528;1055]
MeV (µa ∈ [0.3;0.6]) there is a plateau, i.e. the value of the diquark condensate is proportional
to the surface of a sphere with the radius µ: 〈qq〉 ∼ µ2. This is a characteristic property of the
BCS theory, where the condensate appears on the Fermi surface and is proportional to the density
of states on this surface. Thus we conclude, that for µ > 528 MeV (µa > 0.3) the system reveals
properties of the BCS phase, and that the transition from the BEC to the BCS phase is smooth.

3.2 The chiral condensate

In the Fig. 3 we plot the chiral condensate calculated for the smallest diquark source value
λ = 0.0005 as a function of µ (during the simulations we discovered that dependence of the chiral
condensate on the source λ was very weak). The first observation is that up to µ < 176 MeV
(µa < 0.1), which is approximately mπ/2, the chiral condensate does not depend on the chemical
potential. In the region µ > 176 MeV, where the system is in the vicinity of the transition to the
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Figure 3: The chiral condensate 〈q̄q〉/T 3 as a func-
tion of µ .
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Figure 4: The chiral limit of the chiral condensate
taken for different values of the chemical potential.
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Figure 5: The baryon density nB in the physical units
as a function of µ .
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Figure 6: The ratio nB/n0 as a function of the chem-
ical potential µ .

BEC phase, the chiral condensate starts to decrease. These properties are in agreement with ChPT
predictions (see the Figures 4 and 5 in paper [2]).

According to ChPT, at µ > µc the chiral condensate drops as 〈q̄q〉= 〈q̄q〉0 (µc/µ)2 . To check
this prediction in the region µ ∈ [263;352] MeV (µa ∈ [0.15;0.20]) we fitted our data by a power
law 〈q̄q〉 = A/µα , which provided α = 0.78(2) with χ2/do f = 0.3. It is interesting to note, that
this fit gives a satisfactory description of the data up to µ ∼ 1055 MeV (µa∼ 0.6). Thus, one sees
that the chiral condensate drops slower with increasing chemical potential than ChPT predicts.

Finally, it is interesting to study the chiral symmetry breaking in the chiral limit for different
regions of the chemical potential. In Fig. 4 we plot the chiral condensate for different values of the
chemical potential as a function of the quark mass and the results of the linear extrapolation to ma=
0. It may be seen from Fig. 4, that chiral symmetry breaking exists in the chiral limit within the
hadronic phase (values µ = 0, 70 and 141 MeV), whereas there is no chiral symmetry breaking in
the chiral limit in the BCS phase (µ = 615 MeV) and in the BEC phase (µ = 246, 281, 352 MeV).
However, it is difficult to claim, that there is no chiral symmetry breaking in the whole BEC phase:
when we take the chiral limit, we change the pion mass and thus shift the critical point µc closer
to zero. This effect might be important near the phase transition. Note, that the absence of chiral
symmetry breaking in the chiral limit within the BEC phase agrees with ChPT predictions.

3.3 The baryon density

In Fig. 5 we plot the baryon density3 in the region µ ∈ [0.0;528] MeV (µa ∈ [0.0;0.3]). It is
clear, that for all µ < 176 MeV (µa < 0.1) the baryon density is vanishing within the uncertainty
of the calculation. In the vicinity of the phase transition (µ ≥ 176 MeV) the baryon density starts
to deviate from zero, and for larger values of the chemical potential it rises with the increasing of
µ . ChPT predicts, that the dependence of the baryon density on the chemical potential above µc

is given by a formula nB ∼ µ−µ4
c /µ3. Fit of the data by this formula in the region µ ∈ [263;352]

MeV (µa ∈ [0.15;0.20]) provides µc = 207(7) MeV (aµc = 0.118(4)) with χ2/do f = 1.2. This

3The ansatz nB(λ ) = A+Bλ 2 was employed for the λ → 0 extrapolation.
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value is in agreement with our previous results for µc, obtained from the 〈qq〉 fits. From Fig. 5 it is
visible, that for bigger chemical potential, µa > 0.2, our data deviate from the ChPT prediction.

Next, let us consider the baryon density at larger values of the chemical potential. In Fig. 6 we
plot the ratio nB/n0 as a function of µ , where for the square points the reference density n0 is the
baryon density for free continuum fermions at T = 0, n0 = (2µ3)/(3π2), and for the circle points
n0 is the baryon number density for the free lattice fermions. It can be seen, that in the region
µ ∈ [528;1055] MeV (µa ∈ [0.3;0.6]) these ratios are slowly varying functions of the chemical
potential, whereas the measured baryon density changes by an order of magnitude. We believe, that
the scaling of the baryon density nB ∼ n0 confirms the conclusion that in the region µ ∈ [528;1055]
MeV the system is in a BCS-like phase. The relevant degrees of freedom in this phase are quarks,
which mostly live inside the Fermi sphere with a condensate of Cooper pairs on the Fermi surface.
The fact that nB/n0 ∼ 2.0 . . .2.5, but not ∼ 1.0, can be attributed to UV and IR effects (similar
artifact effects for nB scaling were observed in [21]).

3.4 The Polyakov loop

For all values of the chemical potential studied in this paper the average Polyakov loop is
vanishing within the uncertainty of the calculation. Thus one can conclude, that the system is in
a confined phase for all values of µ under consideration. The possible explanation may be the
absence of the Debye screening in two-color QCD at zero temperature [4, 25].

4. Discussion and conclusion

Our results can be summarized as follows. At small chemical potential µ < µc = mπ/2∼ 200
MeV we observe a hadronic phase. In this phase QC2D matter is in confinement, chiral symmetry
is broken, the diquark condensate vanishes and the baryon number density is also zero. Relevant
degrees of freedom in this phase are Goldstone bosons.

In the region µc < µ < µd ∼ 352 MeV we observe the BEC phase. Characteristic feature of
this phase is Bose-Einstein condensation of scalar diquarks. The order parameter for the transition
to the BEC phase is the diquark condensate, which develops a non-zero value in the region µ > µc.
Within the uncertainty of the calculation µc = mπ/2, where mπ is the pion mass at zero chemical
potential. In this phase, QC2D matter has also confining properties, whereas the baryon density is
non-zero. Relevant degrees of freedom in the BEC phase are Goldstone bosons as well.

It is important to notice, that for all values of the chemical potential µ < µd our results are in
good agreement with the predictions of ChPT. An exception is the chiral condensate, which drops
with increasing chemical potential slower than ChPT predicts in the leading order. This behaviour
of the chiral condensate might be explained by higher order radiative corrections.

If we further increase the chemical potential, starting from µ ∼ 500− 600 MeV one can ob-
serve that the diquark condensate scales as 〈qq〉 ∝ µ2 and the baryon density scales as nB ∝ µ3.
Physically, this implies that the relevant degrees of freedom are quarks, which are mostly living
inside the Fermi sphere with a condensate of Cooper pairs on the Fermi surface. These properties
are clear hints in favor of the BCS phase. In this phase the chiral symmetry is restored in the chiral
limit. The BCS phase extends up to µ ∼ 1000−1100 MeV. We believe, that the BCS phase of the
QC2D theory may be similar to the “quarkyonic phase” of the SU(Nc) QCD at large Nc [26].
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