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QCD at finite quark-/baryon-number density, which describes nuclear matter, has a sign problem

which prevents direct application of standard simulation methods based on importance sampling.

When such finite density is implemented by the introduction ofa quark-number chemical poten-

tial µ , this manifests itself as a complex fermion determinant. Weapply simulations using the

Complex Langevin Equation (CLE) which can be applied in suchcases. However, this is not

guaranteed to give correct results, so that extensive testsare required. In addition, gauge cooling

is required to prevent runaway behaviour. We test these methods on 2-flavour lattice QCD at zero

temperature on a small (124) lattice at an intermediate couplingβ = 6/g2 = 5.6 and relatively

small quark massm= 0.025, over a range ofµ values from 0 to saturation. While this appears

to show the correct phase structure with a phase transition at µ ≈ mN/3 and a saturation density

of 3 at largeµ , the observables show departures from known values at smallµ . We are now

running on a larger lattice (164) at weaker couplingβ = 5.7. At µ = 0 this significantly improves

agreement between measured observables and known values, and there is some indication that

this continues to smallµs. This leads one to hope that the CLE might produce correct results in

the weak-coupling – continuum – limit.
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1. Introduction

QCD at a non-zero quark-number chemical potentialµ has a complex fermion determinant.
Hence standard lattice-gauge-theory simulation methods, which are based on importance sampling,
cannot be applied directly. However, the Langevin Equation does not rely on importance sampling,
and can be adapted to complex actions by replacing real fields by complex fields [1, 2, 3, 4]. For
lattice QCD at finiteµ, this means promoting theSU(3) gauge fields toSL(3,C).

Early attempts to simulate lattice QCD at finiteµ using the Complex Langevin Equation (CLE)
were frustrated by runaway solutions which are possible becauseSL(3,C) is non-compact. Re-
cently it was realized that at least part of the reason why this occurs is that the CLE dynamics has
no resistance to the production of unbounded fields which are unbounded gauge transformations of
bounded fields. This has led to the concept of ‘gauge cooling’, gauge transforming configurations
to keep them as close as possible to theSU(3) manifold [5]. The CLE with gauge cooling has been
applied to QCD at finiteµ at large quark mass [6, 7, 8, 9, 10] and with smaller quark masses on
small lattices [11] and more recently to QCD at finite temperature andµ [12]. At weak enough
couplings these simulations are in agreement with results obtained using other methods.

Even when the CLE converges to a limiting distribution, it is not guaranteed to produce correct
values for the observables unless certain conditions are satisfied [13, 14, 15, 16]. The reason one
needs to check the validity of the CLE for QCD is to first check the requirement that the gauge
fields evolve over a bounded region, which appears to be true. Secondly, the CLE can only be
shown to converge to the correct distribution if the ‘drift terms’ – the derivatives of the (effective)
action with respect to the fields – are holomorphic functions of the fields. Because the fermion
determinant has zeros, the drift term is only meromorphic in the fields. Hencethe CLE will only
give correct results if the contribution of the poles in the drift term are negligible. Those of the
above mentioned papers, which perform CLE simulations of QCD at finiteµ, provide tests of the
range of validity of the method.

Recent work reported by Aarts [17] and by Stamatescu [18] presents methods of determining
when poles in the drift term of the CLE are likely to produce incorrect results. Studies using
random-matrix theory indicate the range of validity of the CLE and suggest modifications of gauge
cooling which can extend this range [19, 20]. There is also recent workwhich suggests other
criteria for determining when the CLE will produce correct results and when it will fail [21]. Other
studies indicate how the introduction of irrelevant terms to the drift term can direct the CLE to
converge to correct limiting distributions [22].

We simulate lattice QCD at zero temperature and finiteµ on a 124 lattice atβ = 6/g2 = 5.6 and
m= 0.025. For these parameters the expected position of the transition from hadronic to nuclear
matter atµ ≈ mN/3 ≈ 0.33 is well separated from any false transition atµ ≈ mπ/2 ≈ 0.21. We
observe that our results are consistent with a transition atµ ≈ mN/3, but not with the expectation
that observables will be fixed at theirµ = 0 values forµ < mN/3. At large enoughµ the quark
number density does saturate at 3 as expected. Very preliminary results ofthese simulations were
reported at Lattice 2015 [23].

We are now simulating on a 164 lattice at weaker coupling,β = 5.7, andm= 0.025. Atµ = 0
we find that the observables are in far better agreement with known resultsthan forβ = 5.6. We
are now moving toµ > 0. We see preliminary indications that for smallµ, the observables are still
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in better agreement with known results than was true atβ = 5.6. This leads us to hope that the
CLE will converge to the correct distributions in the continuum – weak coupling – limit.

2. Complex Langevin Equation for finite density Lattice QCD

If S(U) is the gauge action after integrating out the quark fields, the Langevin equation for the
evolution of the gauge fieldsU in Langevin timet is:

−i

(

d
dt

Ul

)

U−1
l = −i

δ
δUl

S(U)+ηl (2.1)

where l labels the links of the lattice, andηl = ηa
l λ a. Hereλa are the Gell-Mann matrices for

SU(3). ηa
l (t) are Gaussian-distributed random numbers normalized so that:

〈ηa
l (t)ηb

l ′(t
′)〉 = δ abδll ′δ (t − t ′) (2.2)

The complex-Langevin equation has the same form except that theUs are now inSL(3,C). S,
nowS(U,µ) is

S(U,µ) = β ∑
�

{

1−
1
6

Tr[UUUU +(UUUU)−1]

}

−
Nf

4
Tr{ln[M(U,µ)]} (2.3)

whereM(U,µ) is the staggered Dirac operator. Note: backward links are representedby U−1

not U†. Note also that we have chosen to keep the noise-vectorη real. η is gauge-covariant
underSU(3), but not underSL(3,C). This means that gauge-cooling is non-trivial. Reference [15]
indicates why this is not expected to change the physics. After taking−iδS(U,µ)/δUl , the cyclic
properties of the trace are used to rearrange the fermion term so that it remains real forµ = 0 even
after replacing the trace by a stochastic estimator.

To simulate the time evolution of the gauge fields we use the partial second-order formalism
of Fukugita, Oyanagi and Ukawa. [24, 25, 26]

After each update, we gauge-fix iteratively to a gauge which minimizes the unitarity norm –
gauge cooling [5]:

F(U) =
1

4V ∑
l

Tr
[

U†
l Ul +(U†

l Ul )
−1−2

]

≥ 0, (2.4)

whereV is the space-time volume of the lattice.

3. Zero temperature simulations on a111222444 lattice

We simulate lattice QCD with 2 flavours of staggered quarks at finiteµ on a 124 lattice with
β = 5.6 and quark massm= 0.025, using the CLE with gauge cooling.µ is in the range 0≤ µ ≤ 1.5
which includes the expected phase transition atµ ≈ mN/3≈ 0.33 and that of the phase-quenched
theory atµ ≈ mπ/2≈ 0.21. (mN andmπ are from the HEMCGC collaboration [27, 28, 29] ). The
upper limitµ = 1.5 lies well within the saturation regime where each lattice site is occupied by one
quark of each colour.

We simulate for 1–3 million updates of the gauge fields at eachµ value. The input updating
incrementdt = 0.01. Since we use adaptive rescaling ofdt to control the size of the drift term, the
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actualdts used in the updates are considerably smaller than this. The length of the equilibrated part
of the run at eachβ then lies in the range 100–1000 langevin time units. We record the plaquette
(action), the chiral condensate and the quark-number density every 100 updates, and the unitarity
norm after each update.

Figure 1: Unitarity norms forµ = 0.5 on a 124 lat-
tice. The red curve is for the run starting from an
ordered start. The blue curve is for the run starting
from aµ = 1.5 configuration.

Figure 2: Plaquette as a function ofµ . Dashed
lines are the correct value atµ = 0 and the quenched
value.

Figure 3: Quark number density, normalized to one
staggered quark (4-flavours), as a function ofµ .

Figure 4: Chiral condensate, normalized to one stag-
gered quark (4-flavours), as a function ofµ . Dashed
line is the correct value atµ = 0.

At eachµ we observe that the unitarity norm appears to evolve over a compact domain, which
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is one of the requirements for the CLE observables to have a well-defined limit.It is also a neces-
sary but not sufficient condition for it to produce correct results. Atµ = 0 andµ = 0.5 we have
produced trajectories from both an ordered start and starting from an equilibrated configuration at
µ = 1.5. In both cases, it appears that the compact domain is independent of thestart, as are the
average observables. Figure 1 shows the evolution of the unitary norms at µ = 0.5 from the 2 dif-
ferent starts. It is interesting to note that the unitarity norm has a minimum somewhere in the range
0.35≤ µ ≤ 0.9. Does this mean that the CLE produces correct results forµ sufficiently large?

Figure 2 shows the plaquette as a function ofµ from these runs. We note that there is a
very small but significant difference between the value atµ = 0 and the correct value obtained
from an RHMC simulation. The real Langevin equation yields a value significantly closer to the
correct value, so this deviation is not due solely to the inexact nature of theLangevin method. For
µ ≤ 0.25, the plaquette appears to be (almost) independent ofµ as expected. Forµ ≥ 0.35 the
plaquette increases withµ up until saturation.

Figure 3 shows the quark-number density as a function ofµ. Forµ ≤ 0.25 this number density
is small – it is expected to be zero. Forµ ≥ 0.35 this number density increases, reaching the
saturation value of 3 (3 quarks of different colours at each site), forlargeµ. We note, however, that
this density does not appear to show an abrupt increase at the transition as might be expected for a
first-order phase transition.

In figure 4 we plot the chiral condensate (〈ψ̄ψ〉) as a function ofµ. At µ = 0 it already lies
appreciably below the exact value. Instead of remaining constant up to thephase transition to
nuclear matter as expected , it starts to fall monotonically onceµ > 0, finally reaching the expected
value of zero at saturation.

Hence forβ = 5.6, m= 0.025 on a 124 lattice, the CLE appears to produce the correct phase
structure, although the phase transition atµ ≈ mN/3 does not show any evidence for its expected
first-order behaviour. The plaquette shows small deviations from the correct values for smallµ as
does the quark-number density. The chiral condensate shows larger departures from its expected
behaviour.

4. Zero temperature simulations on a111666444 lattice

We are now running CLE simulations on a 164 lattice. At β = 5.6, m= 0.025, comparison
with our 124 runs indicates that finite size effects are small as are finitedt errors.

This larger lattice allows us to run at weaker coupling. We are now running at β = 5.7,
m = 0.025. For ourβ = 5.6, m = 0.025 runs atµ = 0, the CLE measured plaquette value is
0.43690(6) compared with the RHMC value 0.43552(2), while the chiral condensate is 0.1974(7)

compared with 0.2142(8) for the RHMC. At β = 5.7, m = 0.025, the CLE measured plaquette
value is 0.42374(4) compared with the RHMC value 0.42305(1), so the systematic error has been
reduced by roughly a factor of 2. For the chiral condensate the CLE value is 0.1738(11) compared
with the RHMC value of 0.1754(2), almost an order of magnitude improvement. This gives us
some hope that the CLE will give correct values for observables in the weak-coupling (continuum)
limit. We are now extending theseβ = 5.7, m= 0.025 simulations to non-zeroµ.
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5. Discussion, Conclusions and Future Directions

We simulate 2-flavour Lattice QCD at finiteµ on a 124 lattice atβ = 5.6, and light quark mass
m= 0.025 using the CLE with gauge cooling. We see indications of the expected phase transition
from hadronic to nuclear matter atµ ≈ mN/3, and the passage to saturation at largeµ. There
are, however, systematic departures from known and expected results. At µ = 0 the plaquette and
chiral condensates disagree with known results. For the plaquette the systematic error is very small
and forµ < mN/3 the plaquette is almost independent ofµ as expected. At smallµ, the chiral
condensate decreases with increasingµ rather than remaining constant. These do not appear to
be a finite-size effects. The reason for these systematic errors is presumably because zeros of the
fermion determinant produce poles in the drift term, which prevent it from being holomorphic in
the fields, a requirement for proving the validity of the CLE. These zeros also produce poles in the
chiral condensate, which could explain why it shows larger departuresfrom expected values than
do other observables.

We are extending our simulations to 164 lattices. In addition to showing that finite size (and fi-
nitedt) effects are small, these allow us to simulate at smaller coupling,β = 5.7. Here, simulations
at µ = 0 show that systematic errors are significantly reduced. This leads to the hope that, in the
weak coupling (continuum) limit, the CLE might yield correct results (after continuing todt = 0).
Preliminary results from simulations withµ > 0 look promising.

Modifications to the CLE designed to reduce failures of the method need to be pursued. These
include modifications to gauge cooling [19], and modifications to the dynamics bythe introduction
of irrelevant operators either to the action or to the drift term directly [22].

We plan to extend our zero-temperature simulations to smaller quark masses. Finite tempera-
ture simulations are also planned.

Once it is known that the CLE is generating correct results, we will study thehigh-µ phase for
signs of colour superconductivity. This will also require simulations forNf = 3 andNf = 2+1. At
finite temperature we will search for the critical endpoint.
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