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Chiral Gauge Theories David B. Kaplan

Chiral gauge theories are a fascinating class of quantum field theories thought to exhibit a num-
ber of interesting phenomena, including asymptotic freedom, dynamical symmetry breaking and
massless composite fermions. Devising a nonperturbative regulator for such theories has proven
difficult, however, and neither is there a proof for any perturbative regularization scheme that it is
valid to all orders. This should be embarrassing given that the Standard Model is itself a chiral
gauge theory, and even our perturbative treatment of it is not on a firm theoretical footing. One
might therefore wonder whether devising a nonperturbative regulator for chiral gauge theories in
general might not imply new phenomenology for the Standard Model, or resolution of outstanding
puzzles such as the strong CP problem. For this reason, even if strongly coupled chiral gauge theo-
ries play no role in Nature, we still think it is of importance to settle the problem of nonperturbative
regularization.

The path integral for a gauge theory takes the form

Z =
∫
[dA]e−S[A]

∆[A] (1)

where A denotes the gauge field – or link fields with a lattice regularization – while S[A] is the
gauge field action and ∆[A] is the fermion contribution to the integration measure, the result of
performing the path integral over all fermions coupled to the gauge field. For a vector gauge theory
containing of N f Dirac flavors, ∆ is just given by the Dirac determinant. In continuum Euclidian
spacetime this is given by

∆V [A] = det
(
/D+M

)
, (2)

a positive real quantity, and this definition holds on the lattice where there are suitable definitions of
the Dirac operator. The determinant is given as the product of eigenvalues, where the well-defined
eigenvalue equation in a chiral basis takes the form(

0 Dµσµ

Dµ σ̄µ 0

)(
ψR

ψL

)
= iλ

(
ψR

ψL

)
. (3)

In contrast, for the chiral gauge theory consisting of left-handed Weyl fermions in a complex rep-
resentation of the gauge group, a comparable eigenvalue equation(

0 Dµσµ

0 0

)(
0

ψL

)
= iλ

(
ψR

0

)
. (4)

does not lead to an unambiguous definition of λ since ψR can always be redefined by a gauge field
dependent phase. Thus we know that

∆χ [A] = eiδ [A]
√

det
(
/D
)
, (5)

where the phase δ [A], which encodes both anomalies and dynamics, remains to be determined.

It is evident that the phase δ [A] must encode gauge anomalies, since
√

det
(
/D
)

is gauge invari-
ant. It is also easy to make a heuristic argument that δ [A] also affects dynamics in an anomaly-free
theory by considering two different SO(10) gauge theories, one with N f Weyl fermions trans-
forming as 16⊕ 16, the other with N f Weyl fermions transforming as 16⊕ 16. Both are free of
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gauge anomalies, however the former is a vector theory expected to have a gauge invariant bilinear
fermion condensate breaking the SU(N f )×SU(N f ) chiral symmetry down to the diagonal SU(N f ),
while the other has a global SU(2N f ) symmetry and no possibility for a gauge invariant bilinear
condensate. The two theories give rise to the same functional ∆[A] up to the phase δ [A]. If δ [A]
did not play a role in the dynamics of the second theory, one would predict the two theories to have
identical gluon physics, such as identical glueball spectra, which seems very unlikely given that the
two theories should be in entirely different universality classes.

Alvarez-Gaumé et al. proposed a definition of the phase [1, 2] by equating ∆ to the determinant
for a theory with gauged left-handed fermions and non-interacting right-handed fermions:

∆[A] = det

(
0 Dµσµ

∂µ σ̄µ 0

)
. (6)

This operator now has a well-defined eigenvalue equation, but unlike the eigenvalues of the Dirac
theory, its eigenvalues are neither pure imaginary nor gauge invariant, giving rise to the phase δ [A].
The authors showed that δ [A] was given by the η-invariant of a five-dimensional operator, whose
variation reproduced the expected anomaly, while the right-handed fermions decoupled.

The key problem with constructing chiral symmetries theories on the lattice has to do with
anomalies. In the continuum, anomalies are easily understood in terms of charges flowing in and
out of the Dirac sea. However, this picture makes use of the “Hilbert hotel" nature of the Dirac sea,
a semi-infinite spectrum of negative energy states that can always give up or absorb a fermion while
remaining full. On the lattice the Hilbert space is finite and it is not possible to violate charge in
this manner; instead the continuum anomaly requires explicit symmetry breaking on the lattice. A
well-known example is how Wilson fermions, with explicit chiral symmetry violation in the form
of a mass term and a Wilson term, can be fine tuned to yield massless quarks in the continuum
limit, with a remnant of chiral symmetry breaking surviving to the continuum limit as the U(1)A

anomaly [3].
For the purposes of this talk, it is worthwhile revisiting how domain wall fermions and overlap

fermions reproduce the U(1)A anomaly in lattice QCD. Domain wall fermions [4, 5, 6] can be
formulated as five-dimensional fermions on a compact extra dimension with mass equal to +Λ on
one side of the circle and−Λ on the other, with a gauge field that is constant in the extra dimension
(Fig. 1, right). One finds massless chiral modes localized at the mass defects with wavefunction
overlap that vanishes exponentially fast with the size of the extra dimension. Thus the effective
theory appears to have a U(1)A symmetry, even though there is no such symmetry in the five-
dimensional action. However the fermions still “communicate" via a Chern-Simons operator that
is generated on integrating out the bulk modes. This gives rise to bulk currents with a coefficient
of this operator was shown to be topologically quantized [7], which can jump at special coupling
constants where the gap disappears in the bulk and the number of zeromodes at the defects change
[8]. It is this quantized current which correctly reproduces the U(1)A anomaly [9]. The system is
an example of what condensed matter physicists call a topological insulator, and the Chern-Simons
current is the analogue of the Hall current in the integer quantum Hall effect.

Overlap fermions provide the effective four-dimensional theory for domain wall fermions in
the limit of infinite extra dimension [10, 11, 12, 13]. What makes this approach so powerful is that
it reproduces the benefits of taking the limit of infinite extra dimension in the 5D theory, without
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Figure 1: Left: the conventional domain wall fermion construction, with negative and positive chiral modes
bound to opposite mass defects in the extra dimension, with the gauge field A is constant over the extra
dimension. Center: the “waveguide" construction with the gauge symmetry spontaneously broken away
from the near defect; this gives rise to a conventional vector-like gauge theory. Right: the gradient flow
construction where gauge symmetry is unbroken but only fermions near one defect interact appreciably with
physical gauge fields.

having to deal with the infinite extra degrees of freedom of the bulk fermions. Neuberger and
Narayanan were able to derive overlap fermions by treating the fifth dimension as time, and using
a Hamiltonian approach. The overlap operator DV that they derive was shown [13] to obey the
Ginsparg-Wilson equation [14]

{D,γ5}= aDγ5 D , (7)

where here I have restored the lattice spacing a. When D is invertible, this equation is simpler to
understand when written as {D−1,γ5}= aγ5, which in a chiral basis has the general solution

D−1 =

(
0 S1

−S†
2 0

)
+

a
2

(
1 0
0 1

)
. (8)

The beauty of this equation is that the second term above encodes explicit chiral symmetry breaking
in a way that correctly reproduces the axial anomaly and index theorem [15] while still allowing
for an exact symmetry of the action that ensures multiplicative mass renormalization [16] and the
absence of fine tuning. For the overlap operator DV one has S1 = S2 and the desired continuum
limit

DV −−→
a→0

/D =

(
0 D ·σ

D · σ̄ 0

)
(9)

The origin of the chiral symmetry breaking term for DV may be thought of as the bulk fermion
mass in the 5D domain wall formulation.

Now let us revisit the fermion operator in eq. (6) which is proposed to describe chiral fermions
in the continuum. We immediately see an obstacle to transcribing it to the lattice: in order to
correctly reproduce the U(1)A anomaly we would like to represent as a Ginsparg-Wilson operator
of the more general form eq. (8), with the continuum limit eq. (6); however in this case the chiral
symmetry breaking part of eq. (8) will break gauge symmetry, coupling the gauged left-handed
fermions to the neutral right-handed ones. We thus face a choice: either (i) gauge the right-handed
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“mirror” fermions and hope to decouple them, or else (ii) break gauge symmetry explicitly on
the lattice. Both strategies have been followed in the literature. The gauge symmetry breaking
scenario has been explored in [17], where there is evidence that the strategy works in perturbation
theory. Some models invoking exotic dynamics to decouple mirror fermions have been shown not
to work, while for others there is strong evidence for whether it can work or not. The theory we
will consider here represents a new direction in the second class: we will gauge the right-handed
fermions but have them behave as if they have vanishingly soft form factors, allowing them to
(hopefully) decouple from the left-handed fermions which have conventional gauge interactions.
Due to the simple geometrical treatment of chirality in the domain wall formulation we return there
to take the first step toward constructing a chiral gauge theory constructing a chiral gauge theory.

Something special happens if the five dimensional fermion representation and mass terms are
chosen so that at each defect one finds fermion zeromodes which are in an anomaly-free representa-
tion of the gauge group: the coefficient of the Chern-Simons term vanishes. This is a valuable piece
of information, since any purported lattice regulator must have a built-in path to failure for anoma-
lous fermion representations, and yet it is not easy to find a dynamical effect on the lattice that
knows about anomaly cancellation. The vanishing of the Chern-Simons current which communi-
cates between the fermions bound to the two mass defects is an example of such an effect. From the
early 1990s such theories were studied as possible starting points for a regularization of chiral gauge
theories. The simplest example of such a theory assumes two flavors of five-dimensional fermions
with opposite sign masses, so that the 5D theory is P− and T−invariant and the zeromodes each
look like massless Dirac fermions. This (or the 3D analogue) is precisely the Kane-Mele model
for the Quantum Spin Hall Effect, proposed for condensed matter systems over a decade later [18],
where chiral charges (spin) can be transported between the defects but not gauged charges (electric
charge). A slightly less trivial anomaly cancellation model of greater interest to particle theorists is
the 3-4-5 model [19].

While it is easy to construct models where the bulk gauge current vanishes algebraically, it
is necessary to decouple the zeromodes at one wall from the gauge fields in order to obtain a
chiral gauge theory instead of a vector-like one. This was attempted by the “waveguide" model,
where the gauge symmetry was spontaneously broken away from one of the defects, but this was
subsequently shown to give rise to new zeromodes and a vector-like theory (Fig. 1, center; see [20]
for discussion). A new approach for localizing gauge fields was proposed in [21], the central subject
of this talk and of a parallel talk given by D. Grabowska at this conference. Instead of introducing
dynamical gauge fields in the extra dimension, the idea is to have a purely four-dimensional gauge
field extended in the extra dimension via a gradient flow equation which is gauge covariant [22, 23].
An example of such a flow equation in the continuum is

∂sAµ = sgn(s)DνFµν , Aµ(x,0) = Aµ(x) (10)

where s is the coordinate of the extra dimension, Fµν(x,s) is the field strength tensor for the gauge
field Aµ(x,s), and the boundary value Aµ(x) is the 4D gauge field being integrated over in the path
integral. The effect of this flow equation is most readily exhibited for a U(1) gauge theory in two
Euclidean dimensions, where we can decompose

Aµ(x,s) = ∂µω(x,s)+ εµν∂νλ (x,s) , (11)
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whereλ is the physical gauge field, ω is the gauge degree of freedom, and µ,ν = 1,2. The solution
is

ω(x,s) = ω(x,0) , λ̃ (p,s) = e−p2s
λ̃ (p,0) , (12)

where λ̃ (p,s) is the Fourier transform of λ (x,s). Evidently the physical gauge field experiences
Gaussian damping, while the gauge degree of freedom is unaffected by flow. When the fifth di-
mension is discretized, the s coordinate looks like a flavor index from the 4D perspective, and when
coupled to this flowed gauge field it appears that as |s| increases, each subsequent flavor of fermion
has an increasingly soft form factor . The flavors of fermion behave as if they are bigger and less
able to couple to high momentum gauge bosons the farther one travels from s = 0. The zeromodes
at the far defect are therefore called “fluff” and appear to entirely decouple from the physical gauge
fields in the limit of infinite extra dimension. The result is indicated on the right side of Fig. 1 where
we have succeeded in localizing the gauge fields near one mass defect without breaking the gauge
symmetry, or producing new sharp boundaries where a new fermion zeromodes might form.

This construction raises some questions: If the construction is manifestly gauge invariant,
independent of the fermion representation, how is this consistent with ∆ having a gauge variant
phase δ [A] for anomalous 4D theories? Aren’t gaussian form factors as in eq. (12) a problem when
continuing back to Minkowski spacetime, where p2 need not be positive? The example of gauge
flow given above ignores topology...since topology obviously cannot change under continuous flow,
won’t the unwanted mirror fermions still couple to the fermions via instantons?

The answer to the first question is addressed in [21] and will only be summarized here: for
an anomalous fermion representation there will be a nonzero Chern Simons operator induced by
the bulk fermions, and it was shown that this term cannot look like a local 4D operator due to the
gradient flow of the gauge fields. Thus there is no way this construction can be used to investigate
anomalous 4D chiral gauge theories. For the second question: indeed, the theory looks sick at
finite extra dimension, and this motivates taking the strict infinite extra dimension limit as the
definition of the Euclidian theory, which in turn begs devising an overlap construction which has
been presented in [24] and will be summarized below.

As for the third question: the flow takes the initial gauge field A at s = 0 to a gauge field A?

at the far defect; as the extra dimension gets large, A? will generally correspond to an attractive
fixed point of the flow equation. Since the right side of the flow equation eq. (10) is the Euclidian
equation of motion, it follows that all attractive fixed points of the flow equation will be stable
gauge field solutions to the Euclidian equations of motion. Therefore for each toplogical sector
with winding number ν there will be at least the fixed points corresponding to the exact ν-instanton
solutions (or the exact ν-anti-instanton solutions for negative ν). There are no fixed points expected
containing instanton-anti-instanton pairs, however, and so the interaction of the mirror fermions at
the far defect with the gauge field A? will indeed induce topological correlations with the ordinary
fermions, but they will not be local or extensive, and it is not clear whether they spoil decoupling
in the infinite volume limit.

The above discussion suggests that while our new construction may provide a plausible path
to the fermion determinant ∆[A] for a chiral gauge theory, it will certainly require taking the strict
limit of infinite extra dimension first. From our experience with vector-like theories, the way to do
this is to construct the corresponding overlap operator for the 5D theory.
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The overlap operator for a vector-like gauge theory takes a beautifully simple form [12]

DV = 1+ γ5ε(H) (13)

where ε(x) = x/
√

x2 is the sign function, and H is the Wilson Hamiltonian,

γ5H = 1
2

[
γµ(∇µ +∇

∗
µ)−∇µ∇

∗
µ

]
−m≡ Dw−m (14)

where ∇µ and ∇?
µ are the forward and backward lattice covariant derivatives respectively. By using

the property that ε2 = 1 it is easy to show that DV obeys the Ginsparg-Wilson equation; from the
definition of Hw it is also easy to show that DV obeys the desired continuum limit, eq. (9). The way
DV can be derived from the conventional domain wall theory with an s-independent gauge field is
to represent it in terms of the transfer matrix T for Hamiltonian evolution in the fifth dimension;
the way ε arises is as the limit

ε(H) = lim
L→∞

1−T L

1+T L (15)

where L is the number of sites in the fifth dimension.
In the model we are interested in A(x) is replaced by the flowed gauge field A (x,s), which

means that T is now a function of s. If we were to make the incautious but simplifying assumption
that the gauge field is roughly constant as A for half the lattice, and then quickly transitions to the
fixed point A? for the second half of the lattice, then we find

Dχ = 1+ γ5Eχ , (16)

where

Eχ = lim
L→∞

1−T L/2
? T L/2

1+T L/2
? T L/2

=

[
1− (1− ε?)

1
1+ εε?

(1− ε)

]
. (17)

where ε = ε(H[A]) and ε? = ε(H[A?]). As discussed in [24] there are problems associated with
the rapid change from A to A?, as well as subtleties in inverting the matrix (1 + εε?), but we
demonstrate that the above expression for Dχ possesses two important properties: (i) it obeys the
Ginsparg-Wilson equation, and (ii) it has the continuum limit

Dχ −−→
a→0

(
0 D ·σ

D? · σ̄ 0

)
(18)

which looks similar to our starting point in eq. (6), except that the right-handed fermions, instead
of being neutral, couple to the gauge field A?. They are what we call fluff. Since the flow equation
is covariant, the fluff transforms under gauge transformations the same way as do the fermions,
which is why gauge invariance is not broken by the diagonal terms in Dχ which are mandated
by the Ginsparg-Wilson equation. However, because A? is the fixed point of the gradient flow
equation, the fluff cannot interact with gauge bosons, although possibly with residual topology.

This bring us to the last topic of discussion: the nature of topology and gradient flow on the
lattice. Unlike in the continuum, there is no notion of topology for general gauge fields on the
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lattice, and if we use the Wilson action to generate our gradient flow, the only fixed points expected
are pure gauge configurations; however other actions can be devised to preserve the topology of
at least smooth field configurations [25, 26, 27, 28, 29, 30, 31]. It is tempting to use the Wilson
action and topology destroying flow so that the fluff only sees pure gauge fields. The conclusion
of [24] , however, is that when A transitions abruptly to A? one obtains an incorrect index theorem
is Trε 6= Trε?, where these traces serve as a surrogate for gauge field winding number for overlap
fermions. Whether adiabatic Wilson flow makes more sense is an open question.

Whether or not one is restricted to topology preserving flow equations, the overriding question
is whether fluff successfully decouples or not. Hopefully progress can be made to better understand
analytically the case of gradual gradient flow. An interesting computational question is whether
or not the fluff develops topology-induced interactions with the fermions which persists to large
volume. It would seem that the simplest theory to start with will be of the “Quantum Spin Hall
Effect" type, namely a theory where the “chiral” gauge theory in fact consists of a single Dirac
fermion localized at the s = 0 defect, since in this case one has a chance of avoiding sign problems,
and one thoroughly understands the expected phenomenology for the target 4D theory.

References

[1] Luis Alvarez-Gaume, and Paul H. Ginsparg, The topological meaning of nonabelian anomalies, Nucl.
Phys. B243 (1984) 449

[2] Luis Alvarez-Gaume, and S. Della Pietra, and V. Della Pietra, The effective action for chiral fermions,
Phys. Lett. B166 (1986) 177

[3] Luuk H. Karsten and Jan Smit, Lattice Fermions: Species Doubling, Chiral Invariance, and the
Triangle Anomaly, Nucl. Phys. B183 (1981) 103

[4] David B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B288 (1992) 342
[hep-lat/9206013]

[5] D. B. Kaplan, Chiral fermions on the lattice, Nucl. Phys. Proc. Suppl. 30 (1993) 597

[6] David B. Kaplan, Chiral symmetry and lattice fermions, Proceedings, International School, 93rd
Session, Les Houches, France, August 3-28, 2009 (2009) 223 [0912.2560]

[7] Maarten F. L. Golterman and Karl Jansen and David B. Kaplan, Chern-Simons currents and chiral
fermions on the lattice, Phys. Lett. B301 (1993) 219 [hep-lat/9209003]

[8] Karl Jansen and Martin Schmaltz, Critical momenta of lattice chiral fermions, Phys. Lett. B296
(1992) 374 [hep-lat/9209002]

[9] Curtis G. Callan, Jr. and Jeffrey A. Harvey, Anomalies and fermion zero modes on strings and domain
walls, Nucl. Phys. B250 (1985) 427

[10] Rajamani Narayanan and Herbert Neuberger, Chiral determinant as an overlap of two vacua, Nucl.
Phys. B412 (1994) 574 [hep-lat/9307006]

[11] Rajamani Narayanan and Herbert Neuberger", A Construction of lattice chiral gauge theories, Nucl.
Phys. B443 (1995) 305 [hep-th/9411108]

[12] Herbert Neuberger, Exactly massless quarks on the lattice, Phys.Lett. B417 (1998) 141
[hep-lat/9707022]

7



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
1
8

Chiral Gauge Theories David B. Kaplan

[13] Herbert Neuberger, More about exactly massless quarks on the lattice, Phys. Lett. B427 (1998) 353
[hep-lat/9801031]

[14] Paul H. Ginsparg and Kenneth G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D25
(1982) 2649

[15] Peter Hasenfratz, Victor Laliena, and Ferenc Niedermayer, The Index theorem in QCD with a finite
cutoff, Phys. Lett. B427 (1998) 125 [hep-lat/9801021]

[16] Martin Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett.
B428 (1998) 342 [hep-lat/9802011]

[17] Maarten Golterman and Yigal Shamir, SU(N) chiral gauge theories on the lattice, Phys. Rev. D70
(2004) 094506

[18] Charles L. Kane and Eugene J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95
(2005) 226801

[19] Karl Jansen, Chiral fermions and anomalies on a finite lattice, Phys. Lett. B288 (1992) 348
[hep-lat/9206014]

[20] Maarten Golterman, Lattice chiral gauge theories, Nucl. Phys. Proc. Suppl. 94 (2001) 189
[hep-lat/0011027]

[21] Dorota M. Grabowska and David B. Kaplan, Nonperturbative regulator for chiral gauge theories?,
Phys. Rev. Lett. 116 (2016) 211602 [1511.03649]

[22] R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators,
JHEP 03 (2006) 064 [hep-th/0601210]

[23] Martin Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 1008 (2010) 071
[1006.4518]

[24] Dorota M. Grabowska and David B. Kaplan, A Chiral Solution to the Ginsparg-Wilson Equation,
[1610.02151]

[25] M. Teper, Instantons in the quantized SU(2) vacuum: a lattice Monte Carlo investigation, Phys. Lett.
B162 (1985) 357

[26] M. Teper, Axial anomaly suppression (and axial U(1) symmetry restoration) at high temperatures: a
lattice Monte Carlo study, Phys. Lett. B171 (1986) 81

[27] M. Teper, The topological susceptibility in SU(2) lattice gauge theory: an exploratory study, Phys.
Lett. vB171 (1986) 86

[28] Peter J. Braam and Pierre van Baal, Nahm’s transformation for instantons, Commun. Math. Phys. 122
(1989) 267

[29] M. Garcia Pérez, Antonio Gonzalez-Arroyo and B. Soderberg, Minimum action solutions for SU(2)
gauge theory on the torus with nonorthogonal twist, Phys. Lett. B235 (1990) 117

[30] Philippe de Forcrand, Margarita Garcia Pérez, and Ion-Olimpiu Stamatescu, Topology of the SU(2)
vacuum: a lattice study using improved cooling, Nucl. Phys. B499 (1997) 409
[hep-lat/9701012]

[31] Margarita Garcia Pérez, Antonio Gonzalez-Arroyo, Jeroen R. Snippe, and Pierre van Baal, Instantons
from over-improved cooling, Nucl. Phys. B413 (1994) 535 [hep-lat/9309009]

8


